K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tìm các giá trị nguyên x,y thõa mãn : \(y^2=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

Giải :

Do \(y^2\ge0\) =>  \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\ge0\)

                       <=> \(\left(x^2+3x\right)\left(x^2+3x+2\right)\ge0\)

Xảy ra hai trường hợp 

\(\left(I\right)\hept{\begin{cases}x^2+3x\ge0\\x^2+3x+2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\left(x+3\right)\ge0\\x\left(x+3\right)\ge-2\end{cases}}\Rightarrow x\left(x+3\right)\ge0\) 

\(\left(II\right)\hept{\begin{cases}x^2+3x\le0\\x^2+3x+2\le0\end{cases}\Rightarrow\hept{\begin{cases}x\left(x+3\right)\le0\\x\left(x+3\right)\le-2\end{cases}}}\Rightarrow x\left(x+3\right)\le-2\)

\(\Rightarrow\orbr{\begin{cases}x\left(x+3\right)\ge0\\x\left(x+3\right)\le-2\end{cases}}\)

+)  Với \(x\left(x+3\right)\ge0\)

=> \(\hept{\begin{cases}x\ge0\\x\ge-3\end{cases}}\)           hoặc                 \(\hept{\begin{cases}x\le0\\x\le-3\end{cases}}\)

=>  \(\orbr{\begin{cases}x\ge0\\x\le-3\end{cases}}\)

+)  Với  \(x\left(x+3\right)\le-2\)=> \(x^2+3x+2\le0\)  =>  \(\left(x+1\right)\left(x+2\right)\le0\)

=> \(\hept{\begin{cases}x+1\ge0\\x+2\le0\end{cases}}\)                          hoặc                \(\hept{\begin{cases}x+1\le0\\x+2\ge0\end{cases}}\)

=>  \(\hept{\begin{cases}x\ge-1\\x\le-2\end{cases}}\left(removed\right)\)     hoặc                \(\hept{\begin{cases}x\le-1\\x\ge-2\end{cases}}\Rightarrow-2\le x\le-1\Rightarrow x\in\left\{-2;-1\right\}\)

Vậy với \(y^2\ge0\) thì  \(\orbr{\begin{cases}x\ge0\\x\le-3\end{cases}}\) hoặc  \(\orbr{\begin{cases}x=-2\\x=-1\end{cases}}\)

Đẳng thức xảy ra <=> dấu bằng của các trường hợp được xét trên xảy ra    hay   

\(\hept{\begin{cases}y=0\\x\in\left\{0;-1;-2;-3\right\}\end{cases}}\)

 

P/s : Mấy pác xem hộ em :) , sai chỗ nào chỉ em với :V 

0
9 tháng 9 2018

what hell ?
Bạn giải hộ ai à?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.vi diệu !

9 tháng 9 2018

hok cũng giỏi ghê 

~ tự biên tự diễn hả ~

10 tháng 8 2019

sai cmnr rồi

28 tháng 3 2018

=> \(\hept{\begin{cases}x^2+2xy+y^2-4x+4y=12\\x^2-2xy+y^2-2x-2y=3\end{cases}}\)

 Rồi đến đây tự làm nhé

28 tháng 3 2018

HPT <=> \(\hept{\begin{cases}\left(x+y\right)^2-4\left(x+y\right)+4=16\\\left(x-y\right)^2-2\left(x-y\right)+1=4\end{cases}}\)<=> \(\hept{\begin{cases}\left(x+y-2\right)^2=4^2\\\left(x-y-1\right)^2=2^2\end{cases}}\)

=> \(\hept{\begin{cases}x+y-2=\pm4\\x-y-1=\pm2\end{cases}}\)

Có các TH:

1/ \(\hept{\begin{cases}x+y-2=4\\x-y-1=2\end{cases}}\)=> \(\hept{\begin{cases}x+y=6\\x-y=3\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{9}{2}\\y=\frac{3}{2}\end{cases}}\)

2/ \(\hept{\begin{cases}x+y-2=4\\x-y-1=-2\end{cases}}\)=> \(\hept{\begin{cases}x+y=6\\x-y=-1\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{7}{2}\end{cases}}\)

3/ \(\hept{\begin{cases}x+y-2=-4\\x-y-1=2\end{cases}}\)=> \(\hept{\begin{cases}x+y=-2\\x-y=3\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{5}{2}\end{cases}}\)

4/ \(\hept{\begin{cases}x+y-2=-4\\x-y-1=-2\end{cases}}\)=> \(\hept{\begin{cases}x+y=-2\\x-y=-1\end{cases}}\)=> \(\hept{\begin{cases}x=-\frac{3}{2}\\y=-\frac{1}{2}\end{cases}}\)

13 tháng 7 2019

câu a) sáng giải

b) \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}=\frac{4^2}{2}=8>4\) vô nghiệm 

14 tháng 7 2019

a) ĐK: \(x,y\ne-1\)

\(\hept{\begin{cases}x^2+y^2+x+y=\left(x+1\right)\left(y+1\right)\left(1\right)\\\left(\frac{x}{y+1}\right)^2+\left(\frac{y}{x+1}\right)^2=1\left(2\right)\end{cases}}\)

(1) \(\Leftrightarrow\)\(\frac{x^2+x}{\left(x+1\right)\left(y+1\right)}+\frac{y^2+y}{\left(x+1\right)\left(y+1\right)}=1\)

\(\Leftrightarrow\)\(\frac{x\left(x+1\right)}{\left(x+1\right)\left(y+1\right)}+\frac{y\left(y+1\right)}{\left(x+1\right)\left(y+1\right)}=1\)

\(\Leftrightarrow\)\(\frac{x}{y+1}+\frac{y}{x+1}=1\) (3) 

(2) \(\Leftrightarrow\)\(\left(\frac{x}{y+1}+\frac{y}{x+1}\right)^2-\frac{2xy}{\left(x+1\right)\left(y+1\right)}=1\)

\(\Leftrightarrow\)\(2xy=\left(x+1\right)\left(y+1\right)\)

Lại có: \(\left(\frac{x}{y+1}\right)^2+\left(\frac{y}{x+1}\right)^2\ge2\sqrt{\left(\frac{xy}{\left(x+1\right)\left(y+1\right)}\right)^2}=2\sqrt{\frac{1}{4}}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{x}{y+1}=\frac{y}{x+1}\)

\(\Rightarrow\)\(\hept{\begin{cases}\frac{2x}{y+1}=1\\2\left(\frac{x}{y+1}\right)^2=1\end{cases}\Leftrightarrow\left(\frac{x}{y+1}\right)^2-\frac{x}{y+1}=0\Leftrightarrow\frac{x}{y+1}\left(\frac{x}{y+1}-1\right)=0}\)

\(\Rightarrow\)\(\orbr{\begin{cases}\frac{x}{y+1}=0\\\frac{x}{y+1}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0;y=1\\x=y+1\end{cases}\Leftrightarrow}x=y+1}\)

Thay x=y+1 vào (3) ta được: \(\frac{y}{x+1}=0\)\(\Leftrightarrow\)\(y=0\)\(\Rightarrow\)\(x=1\) ( tương tự với y ta cũng được x=0;y=1 ) 

tập nghiệm của pt \(\left(x,y\right)=\left\{\left(0;1\right),\left(1;0\right)\right\}\)

b) ĐK: \(x,y\ne0\) còn cách khác là dùng cosi nhé, VD: \(\hept{\begin{cases}x+\frac{1}{x}+y+\frac{1}{y}=4\left(1\right)\\\left(x+\frac{1}{2}\right)^2+\left(y+\frac{1}{y}\right)^2=4\left(2\right)\end{cases}}\)

lấy (1) + (2) và cộng 2 vào 2 vế của pt mới ta được: 

\(10=a^2+1+b^2+1+\left(a+b\right)\ge2\sqrt{a^2}+2\sqrt{a^2}+4=12\)

\(\Rightarrow\)\(10\ge12\) (vô lí) => hpt vô nghiệm