Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: C=A-B
\(=5x^3+y^3-3x^2y+4xy^2-4x^3+6x^2y-xy^2\)
\(=x^3+3x^2y+3xy^2+y^3\)
D=A+B
\(=5x^3+y^3-3x^2y+4xy^2+4x^3-6x^2y+xy^2\)
\(=9x^3-9x^2y+5xy^2+y^3\)
bậc của C là 3
bậc của D là 3
b: Thay x=0 và y=-2 vào D, ta được:
\(D=9\cdot0^3-9\cdot0^2\left(-2\right)+5\cdot0\cdot\left(-2\right)^2+\left(-2\right)^3\)
\(=0-0+0-8=-8\)
c: Thay x=-1 và y=-1 vào C, ta được:
\(C=\left(-1\right)^3+3\cdot\left(-1\right)^2\cdot\left(-1\right)+3\cdot\left(-1\right)\cdot\left(-1\right)^2+\left(-1\right)^3\)
=-8
\(5y-3x=2xy-11\)
\(\Rightarrow2xy+3x-5y-11=0\)
\(\Rightarrow4xy+6x-10y-22=0\)
\(\Rightarrow\left(4x+6x\right)-\left(10y+15\right)=7\)
\(\Rightarrow2x\left(2y+3\right)-5\left(2y+3\right)=7\)
\(\Rightarrow\left(2x-5\right)\left(2y+3\right)=7\)
Xét 4 trường hợp ta có:
\(TH1:\hept{\begin{cases}2x-5=1\\2y+3=7\end{cases}\Leftrightarrow\hept{\begin{cases}2x=6\Leftrightarrow x=3\\2y=4\Leftrightarrow y=2\end{cases}}}\)
\(TH2:\hept{\begin{cases}2x-5=-1\\2y+3=-7\end{cases}\Leftrightarrow\hept{\begin{cases}2x=4\Leftrightarrow x=2\\2y=-10\Leftrightarrow y=-5\end{cases}}}\)
\(TH3:\hept{\begin{cases}2x-5=7\\2y+3=1\end{cases}\Leftrightarrow\hept{\begin{cases}2x=12\Leftrightarrow x=6\\2y=-2\Leftrightarrow y=-1\end{cases}}}\)
\(TH3:\hept{\begin{cases}2x-5=-7\\2y+3=-1\end{cases}\Leftrightarrow\hept{\begin{cases}2x=-2\Leftrightarrow x=-1\\2y=-4\Leftrightarrow y=-2\end{cases}}}\)
Vậy bạn tự kết luận
P/s ở dòng cuối TH4 viết nhầm thành TH3 thông cảm xíu nha tại vôi vàng nên mới thế
Còn lại đúng hết bạn nhé :) yên tâm
\(5y-3x=2xy-11\)
\(\Rightarrow2xy+3x-5y-11=0\)
\(\Rightarrow4xy+6x-10y-22=0\)
\(\Rightarrow\left(4xy+6x\right)-\left(10y+15\right)=7\)
\(\Rightarrow2x\left(2y+3\right)-5\left(2y+3\right)=7\Rightarrow\left(2x-5\right)\left(2y+3\right)=7\)
Xét từng trường hợp :
1. \(\hept{\begin{cases}2x-5=1\\2y+3=7\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
2. \(\hept{\begin{cases}2x-5=7\\2y+3=1\end{cases}\Rightarrow\hept{\begin{cases}x=6\\y=-1\end{cases}}}\)
3. \(\hept{\begin{cases}2x-5=-1\\2y+3=-7\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-5\end{cases}}}\)
4. \(\hept{\begin{cases}2x-5=-7\\2y+3=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=-2\end{cases}}}\)
Vậy nghiệm của phương trình là : \(\left(x;y\right)=\left(-1;-2\right);\left(2;-5\right)\left(3;2\right);\left(6;-1\right)\)
dffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
\(4xy+6x-10y=22\)
\(\Leftrightarrow4xy+6x-10y-15=7\)
\(\Leftrightarrow2x\left(2y+3\right)-5\left(2y+3\right)=7\)
\(\Leftrightarrow\left(2x-5\right)\left(2y+3\right)=7\)
Vậy \(\left(x;y\right)=\left(-1;-2\right);\left(2;-5\right);\left(3;2\right);\left(6;-1\right)\)