K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

lập bảng xét dấu, ta có

x           1         2        3          4
x-1 -         0    +        +         +           +
x-2 -               -    0   +         +           +
x-3 -               -         -     0   +           +
x-4 -               -         -          -     0     +
(x-1)(x-2)(x-3)(x-4)+        0     -    0    +    0   -     0     +

vậyđể x thỏa mãn biểu thức thì:

1<x<2 hoặc3<x<4

17 tháng 12 2023

a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)

\(\left|x-1\right|^{2023}>=0\forall x\)

=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)

mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)

nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)

=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)

\(P=x^{2023}+\left(y-10\right)^{2023}\)

\(=1^{2023}+\left(9-10\right)^{2023}\)

=1-1

=0

c: \(\left|x-3\right|>=0\forall x\)

=>\(\left|x-3\right|+2>=2\forall x\)

=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)

mà \(\left|y+3\right|>=0\forall y\)

nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)

=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)

Dấu '=' xảy ra khi x-3=0 và y-3=0

=>x=3 và y=3

25 tháng 7 2016

\(1.\frac{x-7}{2}< 0\)

\(\Leftrightarrow\frac{x-7}{2}.2< 0.2\)

\(\Leftrightarrow x-7< 0\Leftrightarrow x< 7\)

\(S=\left\{xlx< 7\right\}\)

2)\(\)Đề biểu thức sau nhân giá trị âm thì :

\(\frac{x+3}{x-5}< 0\Leftrightarrow x+3< 0\Leftrightarrow x< 3\left(Đk:x\ne5\right)\)

\(S=\left\{xlx< 3\right\}\)

3.Giá trị của x thuộc Z để biểu thức sau nhận giá trị dương:

\(x^2+x\ge0\)

\(\Leftrightarrow x\left(x+1\right)\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}x\ge0\\x+1\ge0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\ge0\\x\ge-1\end{cases}}}\)

\(S=\left\{xlx\ge-1\right\}\)

27 tháng 5 2020

a,ta co : \(2\left(x+1\right)=3\left(4x-1\right)\)

\(< =>2x+2=12x-3\)

\(< =>10x=5\)\(< =>x=\frac{1}{2}\)

khi do : \(P=\frac{2x+1}{2x+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}\)

b, ta co : \(\left(x-5\right)\left(y^2-9\right)=0\)

\(< =>\orbr{\begin{cases}x-5=0\\y^2-9=0\end{cases}}\)

\(< =>\orbr{\begin{cases}x=5\\y=\pm3\end{cases}}\)

xong nhe 

27 tháng 5 2020

Cái này thì EZ mà sư phụ : ]

a) 2(x+1) = 3(4x-1)

=> 2x + 2 = 12x - 3

=> 2x - 12x = -3 - 2

=> -10x = -5

=> x = 1/2

Thay x = 1/2 vào P ta được : \(\frac{2\cdot\frac{1}{2}+1}{2\cdot\frac{1}{2}+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}\)

b) \(A=\left(x-5\right)\left(y^2-9\right)=0\)

=> \(\orbr{\begin{cases}x-5=0\\y^2-9=0\end{cases}}\)

\(x-5=0\Rightarrow x=5\)

\(y^2-9=0\Rightarrow y^2=9\Rightarrow\orbr{\begin{cases}y=3\\y=-3\end{cases}}\)

Vậy ta có các cặp x, y thỏa mãn : ( 5 ; 3 ) ; ( 5 ; -3 )

NV
21 tháng 3 2023

\(x.P\left(x-1\right)=\left(x-2\right).P\left(x\right)\) (1)

Thay \(x=0\) vào (1) \(\Rightarrow0.P\left(-1\right)=-2.P\left(0\right)\Rightarrow P\left(0\right)=0\)

\(\Rightarrow x=0\) là 1 nghiệm của đa thức

Thay \(x=2\) vào (1):

\(2.P\left(1\right)=0.P\left(2\right)\Rightarrow P\left(1\right)=0\)

\(\Rightarrow x=1\) là 1 nghiệm của đa thức

\(\Rightarrow\) \(P\left(x\right)\) có ít nhất 2 nghiệm \(x=0;x-1\)

Mà bậc P(x) nhỏ hơn 4 nên P(x) tối đa có bậc 3

\(\Rightarrow P\left(x\right)=k.x.\left(x-1\right).\left(ax+b\right)\) với \(k\ne0\)

Thay vào (1)

\(\Rightarrow x.k\left(x-1\right)\left(x-2\right)\left(ax-a+b\right)=kx\left(x-1\right)\left(x-2\right)\left(ax+b\right)\)

\(\Rightarrow kx\left(x-1\right)\left(x-2\right)\left(ax-a+b-ax-b\right)=0\)

\(\Rightarrow kx\left(x-1\right)\left(x-2\right).\left(-a\right)=0\)

\(\Rightarrow a=0\)

\(\Rightarrow P\left(x\right)=a.x.\left(x-1\right)\) với a là số thực khác 0 bất kì