K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2017

https://goo.gl/BjYiDy

26 tháng 12 2017

Ta có : n3 - 2n + 3n + 3 

= n3 - n + 3 

= n(n2 - 1) 

= n(n - 1)(n + 1) + 3 

Để n3 - 2n + 3n + 3 chia hết cho n - 1

=> n(n - 1)(n + 1) + 3  chia hết cho n - 1

=> 3  chia hết cho n - 1

=> n - 1 thuộc Ư(3) = {-3;-1;1;3}

=> n = {-2;0;2;4}

7 tháng 11 2017

Đơn giản là sét số dư của n khi chia cho 3 

+) Nếu n = 3k ( k thuộc N ) 

x^2n + x^n + 1 = x^6k + x^3k + 1 = ( x^6k - 1 ) + ( x^3k - 1 ) + 3 

x^6k - 1 , x^3k - 1 :/ x^3 - 1 :/ ( x² + x + 1 ) 

=> x^2n + x^n + 1 chia x² + x + 1 dư 2 => Vô lý 

+) n = 3k + 2 

x^2n + x^n + 1 = x.x^(3(2k+1)) + x².x^3k + 1 = x( x^(3(2k+1) - 1 ) + x²( x^3k - 1 ) + ( x² + x + 1 ) 

x( x^(3(2k+1) - 1 ) + x²( x^3k - 1 ) + ( x² + x + 1 ) :/ x² + x + 1 

=> n = 3k + 2 thỏa mán đề bài 

làm tương tự trường hợp n = 3k + 1 cũng thỏa mãn đề bài 

Vậy mọi n có dạng 3k + 2 hoặc 3k + 1 đều thỏa mãn đề bài 

- - - - - - - - - 

Chú ý :/ là chia hết , x^3k - 1 luôn chia hết cho x² + x + 1

 n = 3k + 2 x^2n + x^n + 1 = x.x^(3(2k+1)) + x².x^3k + 1 = x( x^(3(2k+1) - 1 ) + x²( x^3k - 1 ) + ( x² + x + 1 ) x( x^(3(2k+1) - 1 ) + x²( x^3k - 1 ) + ( x² + x + 1 ) :/ x² + x + 1 đoạn này mk chưa hiểu lắm

 

5 tháng 1 2015

Câu 1 thì mình biết làm đó.

Vì 2013 chia 7 dư 4 nên 20132012 chia 7 cũng dư 4

 

30 tháng 8 2016

chắc là 2 đấy

9 tháng 1 2019

áp dụng định lý bezu ta có

để A chia hết cho n4 - 1

=> n4 - 1 =0

=> n4= 1

=> n = 1 

vậy n = 1 thì ..........

9 tháng 1 2019

Không áp dụng định lý BEZU ạ