K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2016

Các bạn giúp mình đi

cái V x là căn đó nghen

29 tháng 11 2016

dùng bất đẳng thức Côsi nha bạn

26 tháng 4 2020

\(\sqrt[3]{\overline{xyz}}=x+y+z\)

\(\Leftrightarrow\overline{xyz}=\left(x+y+z\right)^3\)

Đặt \(m=x+y+z\Rightarrow m\equiv\overline{xyz}\left(mod9\right)\)

\(\Rightarrow\overline{xyz}-m⋮9\)

Đặt \(\overline{xyz}-m=9k\left(k\inℕ\right)\)

\(\Leftrightarrow m^3-m=9k\Leftrightarrow\left(m-1\right)m\left(m+1\right)=9k\)

\(\Rightarrow\left(m-1\right)m\left(m+1\right)⋮9\)

Nhận xét:trong 3 số tự nhiên liên tiếp tồn tại duy nhất 1 số chia hết cho 3 mà tích chúng chia hết cho 9 nên tồn tại duy nhất 1 số chia hết cho 9

Mặt khác \(100\le\overline{xyz}\le999\Rightarrow100\le m^3\le999\)

\(\Leftrightarrow4\le m\le9\Rightarrow3\le m-1\le8;5\le m+1\le10\)

Nếu \(m⋮9\Rightarrow m=9\Rightarrow\overline{xyz}=9^3=729\)

Thử lại ta thấy không thỏa mãn,loại

Nếu \(m-1⋮9\left(KTM\right)\)

Nếu \(m+1⋮9\Rightarrow m+1=9\Rightarrow m=8\Rightarrow\overline{xyz}=8^3=512\)

Thử lại ta thấy thỏa mãn

Vậy số đó là 512

5 tháng 4 2020

Đặt \(\overline{abc}=11m+k;\overline{xyz}=11n+k\left(k\in N,k< 11\right)\)

Khi đó ta có: \(\overline{abcxyz}=1000.\overline{abc}+\overline{xyz}=1000\left(11m+k\right)+11n+k\)

\(=11000m+11n+1001k\)

Biểu thức trên chia hết cho 11 với mọi m, n, k.

Vậy ....

6 tháng 10 2019

3.(x+y)^2+y^2+3y+9/4=25/4

(x+y)^2+(y+3/2)^2=25/4

6 tháng 10 2019

2

Do \(\overline{a56b}⋮45\)nên \(\overline{a56b}\) chia hết cho 5;9 vì \(\left(5,9\right)=1\)

\(TH1:b=5\Rightarrow\overline{a56b}=\overline{a565}\) chia hết cho 9

\(\Rightarrow a+5+6+5⋮9\Rightarrow a+16⋮9\)

Mà \(a\in\left\{1;2;3;4;5;6;7;8;9;0\right\}\)

\(\Rightarrow a=2\)

\(TH2:b=0\Rightarrow\overline{a56b}=\overline{a560}⋮9\)

\(\Rightarrow a+5+6+0⋮9\Rightarrow11⋮9\)

Lập luận tương tự ta có \(a=7\Rightarrow\overline{a56b}=7560\)

1 tháng 2 2020

Nguyễn Thành Trương, Vũ Minh Tuấn, Băng Băng 2k6, Trần Thanh Phương, Nguyễn Lê Phước Thịnh, tth,

Nguyễn Văn Đạt, Hồ Bảo Trâm, Lê Thị Thục Hiền, @Akai Haruma, @Nguyễn Việt Lâm

giúp e vs ạ! Cần gấp! Thanks!

2 tháng 2 2020

Bài 1:

Đặt: \(\left\{{}\begin{matrix}A=\overline{abc}\\B=\overline{def}\end{matrix}\right.\left(100\le A;A,B\le999\right)\)

Khi đó ta có: \(999A=\left(A+B\right)\left(A+B-1\right)\)

Vì: \(A\le999\) nên:

\(\Rightarrow\left(A+B\right)\left(A+B-1\right)\le999^2\)

\(\Rightarrow A+B\le999\)

Xét các trường hợp \(A=999\)\(A< 999\) từ đó :

\(\Rightarrow\overline{abcdef}=494209\)

Vậy số cần tìm là: \(494209\)

2 tháng 4 2020

Có vẻ khá lâu rùi ko có ai giải bài này.

1. \(\overline{ab}^2=\overline{abc}+c^2\le999+9^2=1080\)

\(\Leftrightarrow\overline{ab}\le31\) . Cũng có: \(\overline{ab}\ge10\) vì là số có 2 chữ số

\(\overline{ab}^2-10.\overline{ab}=c^2+c\)

Với \(\overline{ab}\ge16\) thì \(\overline{ab}^2-10\overline{ab}\ge96>90=9^2+9\ge c^2+c\) (ko t/m)

Vậy \(10\le\overline{ab}\le16\)

Thử từng trường hợp tìm được \(\overline{abc}=100;\overline{abc}=147\)

2 tháng 4 2020

2. Dễ thấy \(32^2\le\overline{ab}^2=\overline{acdb}\le99^2\) do \(\overline{acdb}\) có 4 chữ số.

Ta chứng minh được với a nhận các giá trị từ 1 tới 8 thì:

\(\overline{ab}^2=100a^2+20ab+b^2\le100a^2+180a+81< 1000a< \overline{acdb}\)

(Thay lần lượt các giá trị vô là xong)

Do đó \(a=9\). Vì \(\overline{ab}^2\) có tận cùng là b nên b nhận các giá trị 0,1,5,6.

Thử từng trường hợp ta được \(\overline{ab}=95;\overline{ab}=96\)