Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt[3]{\overline{xyz}}=x+y+z\)
\(\Leftrightarrow\overline{xyz}=\left(x+y+z\right)^3\)
Đặt \(m=x+y+z\Rightarrow m\equiv\overline{xyz}\left(mod9\right)\)
\(\Rightarrow\overline{xyz}-m⋮9\)
Đặt \(\overline{xyz}-m=9k\left(k\inℕ\right)\)
\(\Leftrightarrow m^3-m=9k\Leftrightarrow\left(m-1\right)m\left(m+1\right)=9k\)
\(\Rightarrow\left(m-1\right)m\left(m+1\right)⋮9\)
Nhận xét:trong 3 số tự nhiên liên tiếp tồn tại duy nhất 1 số chia hết cho 3 mà tích chúng chia hết cho 9 nên tồn tại duy nhất 1 số chia hết cho 9
Mặt khác \(100\le\overline{xyz}\le999\Rightarrow100\le m^3\le999\)
\(\Leftrightarrow4\le m\le9\Rightarrow3\le m-1\le8;5\le m+1\le10\)
Nếu \(m⋮9\Rightarrow m=9\Rightarrow\overline{xyz}=9^3=729\)
Thử lại ta thấy không thỏa mãn,loại
Nếu \(m-1⋮9\left(KTM\right)\)
Nếu \(m+1⋮9\Rightarrow m+1=9\Rightarrow m=8\Rightarrow\overline{xyz}=8^3=512\)
Thử lại ta thấy thỏa mãn
Vậy số đó là 512
Đặt \(\overline{abc}=11m+k;\overline{xyz}=11n+k\left(k\in N,k< 11\right)\)
Khi đó ta có: \(\overline{abcxyz}=1000.\overline{abc}+\overline{xyz}=1000\left(11m+k\right)+11n+k\)
\(=11000m+11n+1001k\)
Biểu thức trên chia hết cho 11 với mọi m, n, k.
Vậy ....
2
Do \(\overline{a56b}⋮45\)nên \(\overline{a56b}\) chia hết cho 5;9 vì \(\left(5,9\right)=1\)
\(TH1:b=5\Rightarrow\overline{a56b}=\overline{a565}\) chia hết cho 9
\(\Rightarrow a+5+6+5⋮9\Rightarrow a+16⋮9\)
Mà \(a\in\left\{1;2;3;4;5;6;7;8;9;0\right\}\)
\(\Rightarrow a=2\)
\(TH2:b=0\Rightarrow\overline{a56b}=\overline{a560}⋮9\)
\(\Rightarrow a+5+6+0⋮9\Rightarrow11⋮9\)
Lập luận tương tự ta có \(a=7\Rightarrow\overline{a56b}=7560\)
Nguyễn Thành Trương, Vũ Minh Tuấn, Băng Băng 2k6, Trần Thanh Phương, Nguyễn Lê Phước Thịnh, tth,
Nguyễn Văn Đạt, Hồ Bảo Trâm, Lê Thị Thục Hiền, @Akai Haruma, @Nguyễn Việt Lâm
giúp e vs ạ! Cần gấp! Thanks!
Bài 1:
Đặt: \(\left\{{}\begin{matrix}A=\overline{abc}\\B=\overline{def}\end{matrix}\right.\left(100\le A;A,B\le999\right)\)
Khi đó ta có: \(999A=\left(A+B\right)\left(A+B-1\right)\)
Vì: \(A\le999\) nên:
\(\Rightarrow\left(A+B\right)\left(A+B-1\right)\le999^2\)
\(\Rightarrow A+B\le999\)
Xét các trường hợp \(A=999\) và \(A< 999\) từ đó :
\(\Rightarrow\overline{abcdef}=494209\)
Vậy số cần tìm là: \(494209\)
Có vẻ khá lâu rùi ko có ai giải bài này.
1. \(\overline{ab}^2=\overline{abc}+c^2\le999+9^2=1080\)
\(\Leftrightarrow\overline{ab}\le31\) . Cũng có: \(\overline{ab}\ge10\) vì là số có 2 chữ số
\(\overline{ab}^2-10.\overline{ab}=c^2+c\)
Với \(\overline{ab}\ge16\) thì \(\overline{ab}^2-10\overline{ab}\ge96>90=9^2+9\ge c^2+c\) (ko t/m)
Vậy \(10\le\overline{ab}\le16\)
Thử từng trường hợp tìm được \(\overline{abc}=100;\overline{abc}=147\)
2. Dễ thấy \(32^2\le\overline{ab}^2=\overline{acdb}\le99^2\) do \(\overline{acdb}\) có 4 chữ số.
Ta chứng minh được với a nhận các giá trị từ 1 tới 8 thì:
\(\overline{ab}^2=100a^2+20ab+b^2\le100a^2+180a+81< 1000a< \overline{acdb}\)
(Thay lần lượt các giá trị vô là xong)
Do đó \(a=9\). Vì \(\overline{ab}^2\) có tận cùng là b nên b nhận các giá trị 0,1,5,6.
Thử từng trường hợp ta được \(\overline{ab}=95;\overline{ab}=96\)