K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NT
0
AS
1
HM
5
31 tháng 7 2020
vì 0<x,y,z\(\le\)1 nên (1-x)(1-y) >=0 <=> 1+xy >= x+y
<=> 1+z+xy >= x+y+z
<=> \(\frac{y}{1+z+xy}\le\frac{y}{x+y+z}\left(1\right)\)
tương tự có \(\frac{x}{1+y+xz}\le\frac{x}{x+y+z}\left(2\right);\frac{z}{1+x+xy}\le\frac{z}{x+y+z}\left(3\right)\)
cộng theo vế của (1), (2), (3) ta được
\(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{x+y+z}{x+y+z}\le\frac{3}{x+y+z}\)
dấu "=" xảy ra khi x=y=z=1
TD
0
PN
1