K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2016

Ta có:

\(\overline{ab,cd}\) gấp 10 lần \(\overline{a,bcd}\)

\(\Rightarrow\)\(\overline{a,bcd}\) là 1 phần

\(\overline{ab,cd}\) là 10 phần

Từ đó hiệu số phần bằng nhau là:

\(10-1=9\)(phần)

\(\overline{a,bcd}\) là:

\(11,106:9=1,234\)

Vậy các chữ số \(a,b,c,d\) lần lượt là \(1,2,3,4\)

1 tháng 9 2017

abcabc = abc . 1000 + abc 

\(\Leftrightarrow\)abcabc = abc . (1000 + 1)

Suy ra : a. bcd . abc = abcabc

\(\Leftrightarrow\)a. bcd . abc = abc . 1001

\(\Leftrightarrow\)a . bcd  = 1001

Đây là tích giữa số có 1 chữ số và số có 3 chữ số nên ta dễ dàng tìm được a = 7 (vì từ 1 đến 9 chỉ có 7 chia hết cho 1001) từ đó suy ra bcd = 143 

Vậy : a = 7 ; b = 1 ; c = 4 ; d = 3

1 tháng 9 2017

a . abc . bcd = abcabc

a . abc . bcd = abc . 1001

=> a . bcd = 1001

     7 . 143 = 1001

=> a = 7 ; b = 1 ; c 4 ; d = 3

14 tháng 8 2016

ta có thể tách abcabc = abc . 1000 + abc (bạn thử đi đúng đấy!!!) ( nhớ abcabc phải có gạch trên đầu nha) 

<=> abcabc = abc . (1000 + 1) = abc . 1001

Suy ra a . bcd . abc = abcabc 

<=> a . bcd . abc = abc . 1001

<=> a . bcd = 1001

Đây là tích giữa số có 1 chữ số và số có 3 chữ số nên ta dễ dàng tìm được a = 7 ( vì từ 1 -> 9 chỉ có 1001 mới chia hết cho 7) từ đó suy ra bcd = 143

Vậy tóm lại a = 7 ; b = 1 ; c = 4 ; d = 3

tích thử lại là 7 . 143 . 714 = 714714 ( chính xác )

Chúc học tốt môn toán!!!!!!!!!!!!!!!!

24 tháng 3 2017

mình không muốn vào math nhiều lên mình bỏ dấu gạch trên đầu nhá

vì a là số chính phương => \(a\in\left\{1;4;9\right\}\)

+Nếu a=1 => ad=16 => d=6=> \(c\in\left\{1;3\right\}\)

             -Nếu c=1 => abcd=1b16 => vô lý vì không có số chính phương nào như vậy

             -Nếu c=3 => abcd=1b36 => b=9

+Nếu a=4 => ad=49 => d=9 => c=4 => abcd=4b49 (loại)

+Nếu a=9 => ad=9d (vô lý)

20 tháng 8 2020

ab x cdc = abab

=> ab x cdc = ab x 100 + ab

=> ab x cdc = ab x 101 ( 1 )

=> cdc = 101 ( 2 )

=> c = 1 ; d = 0

1 tháng 4 2019

                            Gọi : ab = m ; ac = n ; bc = d ( m,n,d \(\inℕ^∗\))

Ta có : 100m + d = m . n . 7

=> \(\frac{100m+d}{m}=n.7\)(1)

Vì 7n là số tự nhiên => \(100m+d⋮m\Rightarrow d⋮m\Rightarrow d=mk\left(k\inℕ^∗,k< 10\right)\)

Thay vào (1) ta được : \(\frac{100m+mk}{m}=7n\Rightarrow\frac{m\left(100+k\right)}{m}=7n\Rightarrow100+k=7n\)

Vì \(100< 100+k< 110\)mà \(7n⋮7\Rightarrow100+k⋮7\Rightarrow100+k=105\Rightarrow n=\frac{105}{7}=15\)

=> 1bb5 = 1b . 105 

=> 100. 1b + b5 =1b . 100 + 1b . 5 

=> b5 = 1b . 5 => 10b + 5 = 50 + 5b => 5b = 45 => b = 9 

Vậy a = 1 ; b = 9 và c = 5

4 tháng 4 2018

Ta có \(\overline{abbc}=\overline{ab}.\overline{ac}.7^{\left(1\right)}\)

\(\Leftrightarrow100.\overline{ab}+\overline{bc}=7.\overline{ab}.\overline{ac}\Leftrightarrow\overline{ab}\left(7.\overline{ac}-100\right)=\overline{bc}\)

\(\Leftrightarrow7.\overline{ac}-100=\frac{bc}{ab}\)Vì \(0< \frac{bc}{ab}< 10\)nên \(0< 7.\overline{ac}-100< 10\)

\(\Leftrightarrow100< 7.\overline{ac}< 110\Leftrightarrow14< \frac{100}{7}< \overline{ac}< \frac{110}{7}< 16\).Vậy \(\overline{ac}=15\)

Thay (1) được \(\overline{1bb5}=\overline{1b}.15.7\Leftrightarrow1005+110b=1050+105.b\)

\(\Leftrightarrow5b=45\Leftrightarrow b=9\)

Vậy \(a=1,b=9,c=5\)

1 tháng 4 2018

Bấm vào câu hỏi tương tự đi bạn . 

Anh Lê Mạnh Tiến Đạt giải rồi đấy 

30 tháng 9 2023

loading...