Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-3\right)\left(x-2\right)< 0\)
Ta có : \(x-2>x-3\)
\(\Rightarrow\left\{{}\begin{matrix}x-3< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 3\\x>2\end{matrix}\right.\Rightarrow2< x< 3\)
Vậy \(2< x< 3\)
b) \(3x+x^2=0\)
\(x\left(3+x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\3+x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
Vậy \(x\in\left\{-3;0\right\}\)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\dfrac{x-1}{2005}=\dfrac{3-y}{2006}=\dfrac{x-1+3-y}{2005+2006}=\dfrac{x-y-1+3}{4011}=\dfrac{4009-1+3}{4011}=\dfrac{4011}{4011}=1.\)
Từ đó:
\(\dfrac{x-1}{2005}=1\Rightarrow x-1=2005\Rightarrow x=2006.\)
\(\dfrac{3-y}{2006}=1\Rightarrow3-y=2006\Rightarrow y=-2003.\)
Vậy \(x=2006;y=-2003.\)
\(\left(x-3\right)^2+\left|y^2-9\right|=0\)
Vì \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left|y^2-9\right|\ge0\forall y\end{matrix}\right.\)
để bt = 0 \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y^2-9=0\Rightarrow y^2=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy.....
\(\left(x-3\right)^2+\left|y^2-9\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\y^2-9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\y^2=9\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=3\\y=3hoặcy=-3\end{matrix}\right.\)
Ta có:
(\(\dfrac{a}{b}\))3=\(\dfrac{1}{8000}\)
\(\Rightarrow\)(\(\dfrac{a}{b}\))3=(\(\dfrac{1}{20}\))3
\(\Rightarrow\)\(\dfrac{a}{b}\)=\(\dfrac{1}{20}\)
Theo tính chất tỉ lệ thức và tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{1}\)=\(\dfrac{b}{20}\)=\(\dfrac{a+b}{1+20}\)=\(\dfrac{42}{21}\)=2
\(\Rightarrow\)b=2.20=40
Vậy b=40
Học tốt!
\(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{5}\)
\(\Rightarrow\dfrac{5x}{50}=\dfrac{y}{6}=\dfrac{2z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{5x}{50}=\dfrac{y}{6}=\dfrac{2z}{10}\)
\(=\dfrac{5x+y-2z}{50+6-10}=\dfrac{8}{46}=\dfrac{4}{43}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{4}{43}.10=\dfrac{40}{43}\\y=\dfrac{4}{43}.6=\dfrac{24}{43}\\z=\dfrac{4}{43}.5=\dfrac{20}{43}\end{matrix}\right.\)
Ta có: \(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{5}\Rightarrow\dfrac{5x}{50}=\dfrac{y}{6}=\dfrac{2z}{10}\)
Áp dụng tc dãy tỉ số bằng nhau:
\(\dfrac{5x}{50}=\dfrac{y}{6}=\dfrac{2z}{10}=\dfrac{5x+y-2z}{50+6-10}=\dfrac{4}{23}\)
Do \(\left\{{}\begin{matrix}\dfrac{5x}{50}=\dfrac{4}{23}\\\dfrac{y}{6}=\dfrac{4}{23}\\\dfrac{2z}{10}=\dfrac{4}{23}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{40}{23}\\y=\dfrac{24}{23}\\z=\dfrac{20}{23}\end{matrix}\right.\).
Vậy ...
Bậc của đa thức là bậc của hạng tử có bậc cao nhất trong dạng thu gọn của đa thức đó
2. GTLN
có A= x - |x|
Xét x >= 0 thì A= x - x = 0 (1)
Xét x < 0 thì A=x - (-x) = 2x < 0 (2)
Từ (1) và (2) => A =< 0
Vậy GTLN của A bằng 0 khi x >= 0
Bài1:
\(C=x^2+3\text{|}y-2\text{|}-1\)
Với mọi x;ythì \(x^2>=0;3\text{|}y-2\text{|}>=0\)
=>\(x^2+3\text{|}y-2\text{|}>=0\)
Hay C>=0 với mọi x;y
Để C=0 thì \(x^2=0\) và \(\text{|}y-2\text{|}=0\)
=>\(x=0vày-2=0\)
=>\(x=0và.y=2\)
Vậy....
\(f\left(x\right)=9-3x^3-2x^3+x^2+4x-6\)
\(g\left(x\right)=x^3-6x^3+2x^3+4x^2+7x-3x+3\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=9-3x^3-2x^3+x^2+4x-6-\left(x^3-6x^3+2x^3+4x^2+7x-3x+3\right)\)
Bạn tự phá dấu và trừ ra nhé, ghi ở đây dài lắm, kết quả bằng :
\(-2x^3-3x^2\)
Ta có:
\(f\left(x\right)=-5x^3+x^2+4x+3\)
\(g\left(x\right)=-3x^3+4x^2+4x+3\)
\(xy+3x-y=6\)
\(\Rightarrow x\left(y+3\right)-y-3=3\)
\(\Rightarrow x\left(y+3\right)-\left(y+3\right)=3\)
\(\Rightarrow\left(x-1\right)\left(y+3\right)=3\)
Ta có bảng sau:
Vậy cặp số \(\left(x;y\right)\) là \(\left(2;0\right);\left(0;-6\right);\left(4;-2\right);\left(-2;-4\right)\)
Xét x=1=>vô nghiệm
Xét x khác 1 =>y(x-1)=6-3x
<=>y=\(\dfrac{6-3x}{x-1}\)
Vậy với x khác 1 thì mỗi giá trị của x luôn cho ta 1 giá trị tương ứng của y đồng nghĩa với có vô số cặp (x,y)