Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(\frac{4}{5}\right)^{2x+7}=\left(\frac{4}{5}\right)^4\)
=> 2x + 7 = 4
2x = 4 - 7
2x = -3
x = -3 : 2
x = -1,5
Vậy x = -1,5
b, \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng dãy tỉ số bằng nhau :
\(\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
x = 2 . 10 = 20
y = 2 . 15 = 30
z = 2 . 21 = 42
Vậy : .....
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)
MSC của y là : 20
Có: \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(2x+3y-z=186\)
\(\Rightarrow2.15+3.20-28=30+60-28=62\)
\(\frac{186}{62}=3\)
x = 3 . 15 = 45
y = 3 . 20 = 60
z = 3 . 28 = 84
Vậy: .....
Xét \(VT=\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=4\)(1)
Ta có \(\left|y+1\right|\ge0\Leftrightarrow\left|y+1\right|+3\ge3\Rightarrow\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\) nên \(VP\le4\)(2)
Từ (1) ; (2) \(\Rightarrow VP\le4\le VT\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-5\right)\left(1-x\right)\ge0\\\left|y+1\right|=0\end{cases}\Rightarrow\hept{\begin{cases}1\le x\le5\\y=-1\end{cases}}}\)
a) Ta có:
\(\frac{x}{3}=\frac{y}{7}\) và \(x.y=84.\)
Đặt \(\frac{x}{3}=\frac{y}{7}=k.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=7k\end{matrix}\right.\)
+ Có: \(x.y=84\)
\(\Rightarrow3k.7k=84\)
\(\Rightarrow21.k^2=84\)
\(\Rightarrow k^2=84:21\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k^2=\left(\pm2\right)^2\)
\(\Rightarrow k=\pm2.\)
+ TH1: \(k=2.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.2=6\\y=7.2=14\end{matrix}\right.\)
+ TH2: \(k=-2.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-2\right)=-6\\y=7.\left(-2\right)=-14\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(6;14\right),\left(-6;-14\right).\)
Chúc bạn học tốt!
\(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
=> \(\frac{x}{9}=3\Rightarrow x=27\)
\(\Rightarrow\frac{y}{12}=3\Rightarrow y=36\)
\(\Rightarrow\frac{z}{20}=3\Rightarrow z=60\)
các câu còn lại bạn làm tương tự như thế nhé
\(\left(abcd\right)\)là kí hiệu số có 4 chữ số \(abcd\)
Từ: \(\left(ab\right)-\left(cd\right)=1\Rightarrow\left(ab\right)=1+\left(cd\right)\)
Giả sử: \(n^2=\left(abcd\right)=100\left(ab\right)+\left(cd\right)=100\left[1+\left(cd\right)\right]+\left(cd\right)=101\left(cd\right)+100\)
\(Đk:31< n< 100\)
\(\Rightarrow101\left(cd\right)=n^2-100=\left(n+10\right)\left(n-10\right)\)
Vì \(n< 100\Rightarrow n-10< 90\)và 101 là số nguyên tố nên: \(n+10=101\Rightarrow n=91\)
Thử lại: số chính phương \(91^2=8281\)thỏa \(Đk:82-81=1\)
Với \(x=0\) thì \(\frac{y}{16}=\frac{-y}{18}=\frac{0}{17}\)\(\Rightarrow\)\(y=0\)
Với \(x\ne0\) ta có :
\(\frac{xy}{17}=\frac{x+y}{16}=\frac{x-y}{18}=\frac{x+y+x-y}{16+18}=\frac{2x}{34}=\frac{x}{17}\)
\(\Rightarrow\)\(\frac{xy}{17}=\frac{x}{17}\)\(\Leftrightarrow\)\(\frac{y}{17}=\frac{1}{17}\)\(\Leftrightarrow\)\(y=1\)
Mà \(\frac{x+y}{16}=\frac{xy}{17}\)\(\Leftrightarrow\)\(\frac{x+1}{16}=\frac{x}{17}\)\(\Leftrightarrow\)\(x=-17\) ( nhận )
Vậy \(\left(x;y\right)=\left\{\left(0;0\right);\left(-17;1\right)\right\}\)
Nếu đã nhân tử mà không nhân mãu thì 2 p/s sau không bằng phân số trước được nhé ? Trừ 1 vào trường hợp đặc biệt :v
- Cô giáo chọn đề chuyên cho ôn hè nó vậy đấy cậu :(