K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2019

\(4x^2+4y-4xy+5y^2+1=0\)

\(\Leftrightarrow\left(2x-y\right)^2+\left(2y+1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{4}\\y=-\frac{1}{2}\end{cases}}\)

NV
18 tháng 2 2022

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)=4\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

\(\Rightarrow\left(y+1\right)^2\le4\Rightarrow\left[{}\begin{matrix}\left(y+1\right)^2=0\\\left(y+1\right)^2=4\end{matrix}\right.\)

\(\Rightarrow y=\left\{-1;-3;1\right\}\)

Thế vào pt ban đầu tìm x nguyên tương ứng

18 tháng 2 2022

\(x^2+5y^2+2y-4xy-3=0\left(1\right)\\ \Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\\ \Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

Ta có: \(\left(x-2y\right)^2+\left(y+1\right)^2=4\ge\left(y+1\right)^2\)

Mà \(y\in Z\Rightarrow\left(y+1\right)^2\in Z\Rightarrow\left(y+1\right)^2\in\left\{0;1;4\right\}\)

Với \(\left(y+1\right)^2=0\Rightarrow y+1=0\Rightarrow y=-1\)

Thay y=-1 vào pt (1) ta tìm được \(\left\{{}\begin{matrix}x=-4\\x=0\end{matrix}\right.\)

Với \(\left(y+1\right)^2=1\Rightarrow\left[{}\begin{matrix}y+1=1\\y+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=-2\end{matrix}\right.\)

Thay y=0 vào pt (1) ta không tìm được x nguyên 

Thay y=-2 vào pt (1) ta không tìm được x nguyên 

Với \(\left(y+1\right)^2=4\Rightarrow\left[{}\begin{matrix}y+1=-2\\y+1=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=-3\\y=1\end{matrix}\right.\)

Thay y=-3 vào pt (1) tìm được \(x=-6\)

Thay y=1 vào pt (1) tìm được \(x=2\)

AH
Akai Haruma
Giáo viên
14 tháng 1 2024

Lời giải:
$x^2+5y^2+4xy=2023$
$\Leftrightarrow (x^2+4y^2+4xy)+y^2=2023$

$\Leftrightarrow (x+2y)^2+y^2=2023$

Ta biết rằng 1 scp khi chia cho $4$ dư $0$ hoặc $1$

Tức là $(x+2y)^2\equiv 0,1\pmod 4$ và $y^2\equiv 0,1\pmod 4$

$\Rightarrow (x+2y)^2+y^2\equiv 0,1,2\pmod 4$

Mà $2023\equiv 3\pmod 4$

Do đó không tồn tại $x,y$ nguyên để $(x+2y)^2+y^2=2023$

10 tháng 1 2021

\(\Leftrightarrow x^2+4y^2+4xy-2\left(x+2y\right)+1=5-4y^2\)

\(\Leftrightarrow\left(x+2y+1\right)^2=5-4y^2\)

TH1 : \(4y^2=0\)

Pt \(\Leftrightarrow\left(x+2y+1\right)^2=5\)Mà 5 không là số chính phương.

=> Không có số nguyên x nào thỏa mãn.

TH2 : \(4y^2>0\)

Do \(\left(x+2y+1\right)^2\ge0\Rightarrow5\ge4y^2\)

Mà y nguyên

=> \(4y^{2}=4\)

=> y ∈ {1 ; -1}

Với y = 1

=> x + 3 = 1

=> x = -2 (tm)Với y = -1

=> x - 1 = 1

=> x = 2 (tm)Vậy..

20 tháng 8 2021

từ trường hợp y=1 của bạn có thể giải thành 2 trường hợp của x

Thay y=1 vào \(\left(x+2y-1\right)^2=5-4y^2\)được

\(\left(x+2-1\right)^2=5-4\Leftrightarrow\left(x-1\right)^2=1\Leftrightarrow\left(x-1\right)^2-1=0\Leftrightarrow x\left(x-2\right)=0\)\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

*Trường hợp y=-1

\(\left(x-2-1\right)^2=5-4\Leftrightarrow\left(x-3\right)^2=1\Leftrightarrow\left(x-3\right)^2-1=0\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\)\(\Rightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

11 tháng 10 2018

      \(2x^2-4x+4xy+4y^2+4=0\)

\(\Rightarrow\left(x^2-4x+4\right)+\left(x^2+4xy+4y^2\right)=0\)

\(\Rightarrow\left(x^2-2.x.2+2^2\right)+\left(x^2+2.x.2y+\left(2y\right)^2\right)=0\)

\(\Rightarrow\left(x-2\right)^2+\left(x+2y\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-2=0\\x+2y=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=-1\end{cases}}\)

Chúc bạn học tốt.

26 tháng 10 2017

x^2 +5y^2 -4xy +2x +4 =0

x^2 +4y^2 -4xy +y^2 +4y+4 +2x -4y =0

(x -2y)^2 +2(x-2y)+(y+2)^2 =0

(x-2y+1)^2 +(y+2)^2 =1

do x,y nguyên nên x-2y+1; y+2 nguyên 

mà (x-2y+1)^2 ;(y+2)^2 lơn hơn hoặc bằng 0 với mọi x,y

nên ta có 2TH

TH1: (x-2y+1)^2 =1 ;(y+2)^2 =0

TH2: (x-2y+1)^2 =0 ;(y+2)^2 =1

bạn tự giải doạn cuối nhé

k cho mình nhé

22 tháng 12 2023

Ta có:

\(x^2+5y^2-4x-4xy+6y+5=0\\\Rightarrow[(x^2-4xy+4y^2)-(4x-8y)+4]+(y^2-2y+1)=0\\\Rightarrow[(x-2y)^2-4(x-2y)+4]+(y-1)^2=0\\\Rightarrow(x-2y-2)^2+(y-1)^2=0\)

Ta thấy: \(\left\{{}\begin{matrix}\left(x-2y-2\right)^2\ge0\forall x,y\\\left(y-1\right)^2\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left(x-2y-2\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

Mà: \(\left(x-2y-2\right)^2+\left(y-1\right)^2=0\)

nên: \(\left\{{}\begin{matrix}x-2y-2=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2y+2\\y=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot1+2=4\\y=1\end{matrix}\right.\)

Thay \(x=4;y=1\) vào \(P\), ta được:

\(P=\left(4-3\right)^{2023}+\left(1-2\right)^{2023}+\left(4+1-5\right)^{2023}\)

\(=1^{2023}+\left(-1\right)^{2023}+0^{2023}\)

\(=1-1=0\)

Vậy \(P=0\) khi \(x=4;y=1\).