Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 + x + x2 + x3 = y3
=> x2 + x + 1 = y3 - x3
mà x2 + x + 1 > 0
=> y3 - x3 > 0
=> x3 < y3 (1)
Lại có 1 + x + x2 + x3 = y3
=> x3 + 6x2 + 12x + 8 - 5x2 - 11x - 7 = y3
=> (x + 2)3 - y3 = 5x2 + 11x + 7
Nhận thấy 5x2 + 11x + 7 > 0 \(\forall x\)
=> (x + 2)3 > y3 (2)
Từ (1)(2) => x3 < y3 < (x + 2)3 => y3 = (x + 1)3 (Vì x;y nguyên)
Khi đó 1 + x + x2 + x3 = (x + 1)3
<=> 1 + x + x2 + x3 = x3 + 3x2 + 3x + 1
<=> 2x2 + 2x = 0
<=> 2x(x + 1) = 0
<=> \(\orbr{\begin{cases}2x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Khi x = 0 => y = 1
Khi x = -1 => y = 0
Vậy các cặp (x;y) nguyên thỏa mãn là (1;0) ; (-1;0)
theo bài ra ta có
n = 8a +7=31b +28
=> (n-7)/8 = a
b= (n-28)/31
a - 4b = (-n +679)/248 = (-n +183)/248 + 2
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên )
=> n = 183 - 248d (với d là số nguyên <=0)
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3
=> n = 927
x2 + 4x -y2 = 1
=> x2 + 4x - y2 + 4 = 1 + 4 = 5
=> (x2 + 4x + 4) - y2 = 5
=> (x+2)2 - y2 = 5
=> (x+2-y)(x+2+y) = 5
Ta có:
1.5=5
mà x+2-y < x+2+y
=> \(\hept{\begin{cases}\text{x+2-y=1}\\\text{x+2+y}=5\end{cases}}\)=> \(\hept{\begin{cases}x-y=-1\\x+y=3\end{cases}}\)
Từ x-y = -1 => x = y - 1
Thay x = y - 1 vào x + y, ta có:
x + y = y - 1 + y = 3
=> 2y - 1 = 3
=> 2y = 4 => y=2
=> x = 2 - 1 = 2
Vậy x=2; y = 1 thì x2 + 4x -y2 = 1
Ta luôn có \(y^3>x^3\left(x;y\in Z\right)\left(1\right)\)
Xét \(\left(x+2\right)^3-y^3=x^3+6x^2+12x+8-x^3-x^2-x-1\)
\(=5x^2+11x+7=5\left(x^2+2.\frac{11}{10}x+\frac{121}{100}\right)+\frac{19}{20}\)
\(=5\left(x+\frac{11}{10}\right)^2+\frac{19}{20}>0\forall x\left(2\right)\)
Từ (1) và (2) \(\Rightarrow y^3=\left(x+1\right)^3\Leftrightarrow x^3+x^2+x+1=x^3+3x^2+3x+1\)
\(\Leftrightarrow2x^2+2x=0\Leftrightarrow2x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)Đến Đây thay vào tìm y là xong