Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình không biết là đúng không nhưng mình làm vậy này
Biến đổi vế phải ta có :
VP=y^4-6y^3+11y^2-6y=(y-1)(y-2)(y-3)=(x-2019)^2
=> y-1 ,y-2, y-3 là 3 số nguyên liên tiếp
mà tích của 3 số nguyên liên tiếp không thể là số chính phương
=>{x-2019=0
{y-1=0 hoặc y-2=0 hoặc y-3 =0
vậy ta có các cặp x,y là (2019:1) hoặc (2019:2)hoặc (2019;3)
Tìm các cặp số nguyên(x;y) sao cho /x^2-2x/-\(\frac{1}{2}\)<y<2-/x-1/
Chú thích:/ / giá trị tuyệt đối
Ta có \(\frac{x-y\sqrt{2019}}{y-z\sqrt{2019}}=\frac{m}{n}\left(m,n\varepsilonℤ,\left(m,n\right)=1\right).\)
\(\Rightarrow nx-ny\sqrt{2019}=my-mz\sqrt{2019}\Leftrightarrow nx-my=\sqrt{2019}\left(ny-mz\right).\)\(\Rightarrow\hept{\begin{cases}nx-my=0\\ny-mz=0\end{cases}\Rightarrow}\frac{x}{y}=\frac{y}{z}=\frac{m}{n}\Rightarrow xz=y^2.\)
Khi đó \(x^2+y^2+z^2=\left(x+z\right)^2-2xz+y^2=\left(x+z\right)^2-2y^2+y^2=\left(x+z\right)^2-y^2\)
\(=\left(x-y+z\right)\left(x+y+z\right)\)
Vì \(x+y+z\)là số nguyên lớn hơn 1 và \(x^2+y^2+z^2\)là số nguyên tố nên
\(\hept{\begin{cases}x^2+y^2+z^2=x+y+z\\x-y+z=1\end{cases}\Leftrightarrow}x=y=z=1\)(chỗ này bn tự giải chi tiết nhé, và thử lại nữa)
Kết luận...
\(x\left(x+1\right)=y^2+1\Leftrightarrow4x^2+4x+1=4y^2+5\)\(\Leftrightarrow\left(2x+1\right)^2-\left(2y\right)^2=5\Leftrightarrow\left(2x+2y+1\right)\left(2x-2y+1\right)=5\)
Vì \(x,y\in Z\)\(\Rightarrow2x+2y+1;2x-2y+1\)là ước của 5 nên ta có:
\(TH1:\hept{\begin{cases}2x+2y+1=5\\2x-2y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}}\)
\(TH2:\hept{\begin{cases}2x+2y+1=-1\\2x-2y+1=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}}\)
\(TH3:\hept{\begin{cases}2x+2y+1=5\\2x-2y+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)
\(TH4:\hept{\begin{cases}2x+2y+1=-5\\2x-2y+1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)
Vậy các cặp số (x;y) phải tìm là: (1;1);(1;-1);(-2;1);(-2;-1)
Đặt: \(x^{673}=a;y^{673}=b\Rightarrow a^3=b^3-b^2-b+2\)
\(+,b=0\Rightarrow a^3=-2\left(\text{vô lí}\right)\)
\(+,b=1\Rightarrow a=1\left(\text{thỏa mãn}\right)\)
\(+,b=-1\Rightarrow a^3=3\left(\text{vô lí vì a nguyên}\right)\)
\(+,b=-2\Rightarrow a^3=8\Leftrightarrow a=2\left(\text{loại vì x;y không nguyên}\right)\)
\(+,b\ne1;0;-1;-2\Rightarrow\left(b-1\right)^3< b^3-b^2-b+2< b^3\left(\text{nên loại}\right)\)
bạn tự kết luận
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
\(PT\Leftrightarrow x^2+xy-669xy-669y^2=2019\)
\(\Leftrightarrow x\left(x+y\right)-669y\left(x+y\right)=2019\)
\(\Leftrightarrow\left(x+y\right)\left(x-669y\right)=2019\)
xét TH ra bạn
99999