\(\frac{2016}{12-x}\) có giá trị lớn nhất. Tìm giá trị lớn nhất...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2016

Để A đạt GTLN

=>12-x là số nguyên dương nhỏ nhất

=>A=\(\frac{2016}{1}=2016\)

Dấu "=" xảy ra khi 12-x=1

                             =>x=11

Vậy Amax=2016 khi x=11

29 tháng 5 2016

Để A đạt GTLN

=>12-x là số nguyên dương nhỏ nhất

=>A=$\frac{2016}{1}=2016$20161 =2016

Dấu "=" xảy ra khi 12-x=1

                             =>x=11

Vậy Amax=2016 khi x=11

 
Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìmgiá trị lớn nhất đó.Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn...
Đọc tiếp

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.

Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìm

giá trị lớn nhất đó.
Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.
Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn nhất.
Bài tập 7. Tìm giá trị nhỏ nhất của của biểu thức sau: A= \(\frac{6\cdot n-1}{3\cdot n-2}\) (với n là số nguyên )

Bài tập 8: cho phân số A= \(\frac{n+1}{n-3}\) . Tìm n để có giá trị lớn nhất.
Bài tập 9: ho phân số: p= \(\frac{6\cdot n+5}{3\cdot n+2}\) (n \(\in\)  N Với giá trị nào của n thì phân số p
có giá trị lớn nhất? tìm giá trị lớn nhất đó.

0
20 tháng 2 2021

Để \(\frac{2008}{x-1000}\)đạt giá trị lớn nhất 

Thì \(x-1000\)đạt giá trị dương nhỏ nhất 

Mà x nguyên\(=>x=1001\)

28 tháng 1 2020

a)\(A=\frac{2n+3}{n-2}\left(n\:\ne2\right)\)

\(\Rightarrow\frac{2n-4+7}{n-2}\)\(=\)\(\frac{2\left(n-2\right)+7}{n-2}=\frac{2\left(n-2\right)}{n-2}+\frac{7}{n-2}=2+\frac{7}{n-2}\)

\(2\inℤ\Rightarrow\frac{7}{n-2}\inℤ\Rightarrow7⋮\left(n-2\right)\)\(\Rightarrow\left(n-2\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta có bảng :

n-2-7-117
n-515

9

Vậy \(n\in\left\{-5;1;3;9\right\}\)

11 tháng 2 2018

Ta có: \(A=\frac{1-3x}{x-1}=\frac{-3\left(x-1\right)-2}{x-1}=\frac{-3\left(x-1\right)}{x-1}-\frac{2}{x-1}=-3-\frac{2}{x-1}\le-3\)

Dấu "=" xảy ra khi \(2⋮\left(x-1\right)\Leftrightarrow x-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Nếu x - 1 = -1 => x = 0

Nếu x - 1 = 1 => x = 2

Nếu x - 1 = 2 => x = 3

Nếu x - 1 = -2 => x = -1

Vậy Amax = -3 <=> x = {0;2;3;-1}

12 tháng 3 2017

không bt

5 tháng 4 2019

\(A=\frac{2n+3}{n-2}=\frac{2n-4+7}{n-2}=\frac{2.\left(n-2\right)}{n-2}+\frac{7}{n-2}=2+\frac{7}{n-2}\)

Ta có A lớn nhất \(\Leftrightarrow\frac{7}{n-2}\)lớn nhất

\(\Leftrightarrow\hept{\begin{cases}n-2coGTNN\\n-2>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}n>2;n\in Z\\n-2coGTNN\end{cases}}\)

\(\Leftrightarrow n=3\)

Khi đó A có GTLN là \(\frac{2.3+3}{3-2}=9\)

Vậy MAX A =9 \(\Leftrightarrow x=3\)

(P/S: có vài chỗ anh viết ko ra tiếng việt nhé )

22 tháng 3 2016

tớ làm song bài này lâu rôi

22 tháng 3 2016

A =15/x+2 + 14/x+2 = 29/x+2

b) x+2 là U(29) = { -1;1;-29;29}

=> x ={ -3;-1;-31;27}

30 tháng 6 2018

1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)

Vậy GTNN của A = -8 khi x=0, y=2.

b) Ta có: \(B=|x-3|+|x-7|\)

\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)

Vậy GTNN của B = 4 khi \(3\le x\le7\)

2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)

\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)

b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)

Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:

\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)

Bài 3: đề không rõ.

30 tháng 6 2018

Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)

Có \(x^4\ge0;\left(y-2\right)^2\ge0\)

\(\Rightarrow A\ge0+0-8=-8\)

Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)

\(b,B=\left|x-3\right|+\left|x-7\right|\)

\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)

\(\Rightarrow B\ge\left|x-3+7-x\right|\)

\(\Rightarrow B\ge\left|-10\right|=10\)

Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)