K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2019

Không mất tính tổng quát.

g/s : \(x\ge y\ge z\)\(\ge1\)

Theo bài ra ta có: \(\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)⋮xyz\)

=> \(\left(xy^2z+yz+xy+1\right)\left(zx+1\right)⋮xyz\)

=> tồn tại số nguyên dương k sao cho:  \(xy+yz+zx+1=k.xyz\)

=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=k\)

=> \(k\le1+1+1+1=4\)(1)

TH1: k = 4  khi đó dấu "=" của bất đẳng thức (1) xảy ra khi và chỉ khi x=y=z=1 (  tm)

TH2: k=3

=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=3\)

=>\(3\le\frac{1}{z}+\frac{1}{z}+\frac{1}{z}+\frac{1}{z^3}\)

=> \(3\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1 

=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=2\)

=> \(2\le\frac{1}{y}+\frac{1}{y}+\frac{1}{y^2}=\frac{2}{y}+\frac{1}{y^2}\)=> y=1

Với z=1; y=1 => \(\frac{1}{x}+\frac{1}{x}=1\Rightarrow x=2\)

Vậy x=2, y=z=1 ( thử vào thỏa mãn)

TH3: k=2

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{zyx}=2\)

=> \(2\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1

=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=1\)

=> \(1\le\frac{2}{y}+\frac{1}{y^2}\)=> y=2 hoặc y=1

Với y=1 => \(\frac{1}{x}+\frac{1}{x}=0\left(loai\right)\)

Với y=2 => \(\frac{1}{x}+\frac{1}{2x}=\frac{1}{2}\Rightarrow x=3\)

Vậy x=3; y=2; z=1 ( thử vào thỏa mãn)

TH4: K=1

=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=1\)

=> \(1\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1 hoặc z=2 hoặc z=3

Với z=1 => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=0\)loại

Với \(z=2\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{2xy}=\frac{1}{2}\)

=> \(\frac{1}{2}\le\frac{2}{y}+\frac{1}{2y^2}\)=> y=1 (loại), y=2 (loại ); y=3 => x=7 ; y=4 => x= 9/2(loại); y>5 loại

Với z =3   => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{3}+\frac{1}{3xy}=1\)=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{3xy}=\frac{2}{3}\)

=> \(\frac{2}{3}\le\frac{2}{y}+\frac{1}{3y^2}\)=> y=1 ( loại ), y=2 => x=7 (tm) , y=3 => x=10/3 (loại); y>4 ( loại)

TH này x=7; y=2; z=1 ( thử vào ko thỏa mãn) hoặc x=7; y=3 ; z=1 ( thử vào ko thỏa mãn)

Vậy: (x; y; z)  là bộ ba số (1; 1; 1), (3; 2; 1); (2; 1;1 ) và các hoán vị của chúng

Ps: Cầu một cách ngắn gọn hơn! Thanks

16 tháng 1 2020

Câu hỏi của Minh Nguyễn Cao - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo nhé!

14 tháng 11 2018

a/ \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)

\(\Rightarrow\left(x+y\right)\left(m+1\right)=3m+1\)

\(\Leftrightarrow\left(x+y\right)=\frac{3m+1}{m+1}=3-\frac{2}{m+1}\)

Vì x, y nguyên nên (m + 1) phải là ước nguyên của 2.

14 tháng 11 2018

b/ \(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x+my=2m-1\left(1\right)\\y=mx-m^2+2\left(2\right)\end{cases}}\)

\(\Rightarrow\left(2\right)\Leftrightarrow\left(m+1\right)x+m\left(mx-m^2+2\right)=2m-1\)

\(\Leftrightarrow\left(m^2+m+1\right)\left(x-m+1\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=m-1\\y=2-m\end{cases}}\)

\(\Rightarrow A=\left(m-1\right)\left(2-m\right)=-m^2+3m-2\le\frac{1}{4}\)