Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,https://diendantoanhoc.net/topic/157361-t%C3%ACm-c%C3%A1c-s%E1%BB%91-nguy%C3%AAn-x-y-tho%E1%BA%A3-m%C3%A3n-x3y32016/
Lời giải:
Áp dụng BĐT Cô-si cho các số không âm ta có:
\(x^4+x^4+y^4+z^4\geq4\sqrt[4]{x^8y^4z^4}=4|x^2yz|\ge 4x^2yz\)
\(x^4+y^4+y^4+z^4\geq 4xy^2z\)
\(x^4+y^4+z^4+z^4\geq 4xyz^2\)
Cộng theo vế và rút gọn:
\(\Rightarrow x^4+y^4+z^4\geq xyz(x+y+z)=3xyz\)
Dấu "=" xảy ra khi \(x=y=z\). Kết hợp với $x+y+z=3$ suy ra $x=y=z=1$
Do đó:
\(M=x^{2018}+y^{2019}+z^{2020}=1+1+1=3\)
\(x^3+y^3=z\left(3xy-z^2\right)\)
\(\Rightarrow x^3+y^3=3xyz-z^3\)
\(\Rightarrow x^3+y^3+z^3=3xyz\)(1)
Từ (1) bạn biến đổi được: \(\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\) ( x+y+z=0 ko thỏa mãn đề bài.)
Mà \(x+y+z=3\Rightarrow x=y=z=1\)
Khi đó: \(A=673\left(1^{2020}+1^{2020}+1^{2020}\right)+1\)
\(=673.3+1=2020\)
Vậy \(A=2020.\)Chúc bạn học tốt.
theo đầu bài ta có\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\)=>\(3x^2+3y^2=10xy\)
A=\(\dfrac{x-y}{x+y}\)
=>\(A^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}=\dfrac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\dfrac{10xy-6xy}{10xy+6xy}=\dfrac{4xy}{16xy}=\dfrac{1}{4}\)
=>A=\(\sqrt{\dfrac{1}{4}}=\dfrac{-1}{2}hoặc\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\) (cộng trừ căn 1/4 nhé)
vì y>x>0=> A=-1/2
Lời giải:
Áp dụng công thức hằng đẳng thức:
\(x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\) ta có:
\(x^3+y^3+3xyz=z^3\)
\(\Leftrightarrow x^3+y^3+(-z)^3-3xy(-z)=0\)
\(\Leftrightarrow (x+y-z)(x^2+y^2+z^2-xy+xz+yz)=0\)
TH1: \(x+y-z=0\)
\(\Leftrightarrow z=x+y\)
Thay vào: \(z^3=2(2x+2y)^2=8(x+y)^2\)
\(\Leftrightarrow (x+y)^3=8(x+y)^2\)
\(\Leftrightarrow (x+y)^2(x+y-8)=0\)
Do x,y nguyên dương nên \((x+y)^2\neq 0\Rightarrow x+y-8=0\Rightarrow x+y=8\Rightarrow z=8\)
\(x+y=8\Rightarrow (x,y)=(1,7); (2;6); (3;5); (4;4)\) và các hoán vị tương ứng
TH2: \(x^2+y^2+z^2-xy+yz+xz=0\)
\(\Leftrightarrow \frac{(x-y)^2+(y+z)^2+(z+x)^2}{2}=0\)
Vì \((x-y)^2; (y+z)^2; (z+x)^2\geq 0\Rightarrow (x-y)^2+(y+z)^2+(x+z)^2\geq 0\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x-y=0\\ y+z=0\\ z+x=0\end{matrix}\right.\) (vô lý do x,y,z nguyên dương)
Vậy \((x,y,z)=(1;7;8); (2;6;8); (3;5;8); (4;4;8); (5;3;8); (6;2;8); (7;1;8)\)