K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 12 2017

Lời giải:

Áp dụng công thức hằng đẳng thức:

\(x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\) ta có:

\(x^3+y^3+3xyz=z^3\)

\(\Leftrightarrow x^3+y^3+(-z)^3-3xy(-z)=0\)

\(\Leftrightarrow (x+y-z)(x^2+y^2+z^2-xy+xz+yz)=0\)

TH1: \(x+y-z=0\)

\(\Leftrightarrow z=x+y\)

Thay vào: \(z^3=2(2x+2y)^2=8(x+y)^2\)

\(\Leftrightarrow (x+y)^3=8(x+y)^2\)

\(\Leftrightarrow (x+y)^2(x+y-8)=0\)

Do x,y nguyên dương nên \((x+y)^2\neq 0\Rightarrow x+y-8=0\Rightarrow x+y=8\Rightarrow z=8\)

\(x+y=8\Rightarrow (x,y)=(1,7); (2;6); (3;5); (4;4)\) và các hoán vị tương ứng

TH2: \(x^2+y^2+z^2-xy+yz+xz=0\)

\(\Leftrightarrow \frac{(x-y)^2+(y+z)^2+(z+x)^2}{2}=0\)

\((x-y)^2; (y+z)^2; (z+x)^2\geq 0\Rightarrow (x-y)^2+(y+z)^2+(x+z)^2\geq 0\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} x-y=0\\ y+z=0\\ z+x=0\end{matrix}\right.\) (vô lý do x,y,z nguyên dương)

Vậy \((x,y,z)=(1;7;8); (2;6;8); (3;5;8); (4;4;8); (5;3;8); (6;2;8); (7;1;8)\)

1,https://diendantoanhoc.net/topic/157361-t%C3%ACm-c%C3%A1c-s%E1%BB%91-nguy%C3%AAn-x-y-tho%E1%BA%A3-m%C3%A3n-x3y32016/

16 tháng 4 2019

đã có lời giải đâu

13 tháng 1 2015

1) Vì a, b là số nguyên tố và a - 1 chia hết cho b nên a là số nguyên tố lẻ >=3 và b =2( vì a -1 chẵn)

b3 - 1 = 7 chia hết cho a, nên a =7. Vậy a = b2 + b + 1( 7 = 22 + 2 + 1)

AH
Akai Haruma
Giáo viên
20 tháng 6 2019

Lời giải:

Áp dụng BĐT Cô-si cho các số không âm ta có:

\(x^4+x^4+y^4+z^4\geq4\sqrt[4]{x^8y^4z^4}=4|x^2yz|\ge 4x^2yz\)

\(x^4+y^4+y^4+z^4\geq 4xy^2z\)

\(x^4+y^4+z^4+z^4\geq 4xyz^2\)

Cộng theo vế và rút gọn:

\(\Rightarrow x^4+y^4+z^4\geq xyz(x+y+z)=3xyz\)

Dấu "=" xảy ra khi \(x=y=z\). Kết hợp với $x+y+z=3$ suy ra $x=y=z=1$

Do đó:

\(M=x^{2018}+y^{2019}+z^{2020}=1+1+1=3\)

12 tháng 9 2018

     \(x^3+y^3=z\left(3xy-z^2\right)\)

\(\Rightarrow x^3+y^3=3xyz-z^3\)

\(\Rightarrow x^3+y^3+z^3=3xyz\)(1)

Từ (1) bạn biến đổi được: \(\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\) ( x+y+z=0 ko thỏa mãn đề bài.)

Mà \(x+y+z=3\Rightarrow x=y=z=1\)

Khi đó: \(A=673\left(1^{2020}+1^{2020}+1^{2020}\right)+1\)

              \(=673.3+1=2020\)

Vậy \(A=2020.\)Chúc bạn học tốt.

13 tháng 2 2018

theo đầu bài ta có\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\)=>\(3x^2+3y^2=10xy\)

A=\(\dfrac{x-y}{x+y}\)

=>\(A^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}=\dfrac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\dfrac{10xy-6xy}{10xy+6xy}=\dfrac{4xy}{16xy}=\dfrac{1}{4}\)

=>A=\(\sqrt{\dfrac{1}{4}}=\dfrac{-1}{2}hoặc\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\) (cộng trừ căn 1/4 nhé)

vì y>x>0=> A=-1/2