Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=4x^3y^5z^3\) bậc của đơn thức này là:11
HT
Ta có đơn thức:
\(\left(20x\right).\left(xy^2\right).\frac{1}{5}\)\(xy^3z^3\)
\(=\left(20.\frac{1}{5}\right)\left(xxx\right)\left(y^3y^3\right)z^3\)
\(=4x^3y^5z^3\)
+ Hệ số : \(4\)
+ Phần biến : \(x^3y^5z^3\)
+ Bậc của đa thức : \(3+5+3=11\)
a) Tích của 14xy314xy3 và −2x2yz2−2x2yz2 là:
14xy3.(−2x2yz2)=−12x3y4z214xy3.(−2x2yz2)=−12x3y4z2
Đơn thức tích có hệ số là −12−12 ; có bậc 9.
b) Tích của −2x2yz−2x2yz và −3xy3z−3xy3z là:
−2x2yz.(−3xy3z)=6x3y4z2−2x2yz.(−3xy3z)=6x3y4z2
Đơn thức có hệ số là 6; có bậc 9.
a) \(\dfrac{1}{4}xy^3.\left(-2\right)x^2yz^2\)
= \(\left[\dfrac{1}{4}.\left(-2\right)\right].\left(x.x^2\right).\left(y^3.y\right).z^2\)
= \(\dfrac{-1}{2}x^3y^4z^2\).
Đơn thức trên có hệ số là \(\dfrac{-1}{2}\) và bậc là 9.
b) \(-2x^2yz.\left(-3\right)xy^3z\)
= \(\left[\left(-2\right).\left(-3\right)\right].\left(x^2.x\right).\left(y.y^3\right).\left(z.z\right)\)
= 6x\(^3y^4z^2\).
Đơn thức trên có hệ số là 6 và bậc là 9.
a,,\(A=30x^2yz-4xy^2z-2008xyz^2\)
=> bậc của A là bậc 4
b,\(15x-2y=1004z\Rightarrow15x-2y-1004z=0\)
\(A=2xyz\left(15x-2y-1004z\right)=0\)
a: \(A=11x^4y^3z^2+20x^2yz-4xy^2z+10x^2yz-3x^4y^3z^2-2008xyz^2-8x^4y^3z^2\)
\(=30x^2yz-4xy^2z-2008xyz^2\)
b: \(A=30x^2yz-4xy^2z-2xyz\left(15x-2y\right)\)
\(=30x^2yz-4xy^2z-30x^2yz+4xy^2z=0\)
\(a,A=11x^4y^3z^2+20x^2yz-\left(4xy^2z-10x^2yz+3x^4y^3z^2\right)-\left(2008xyz^2+8x^4y^3z^2\right)\)
\(A=11x^4y^3z^2+20x^2yz-4xy^2z-10x^2yz+3x^4y^3z^2-2008xyz^2+8x^4y^3z^2\)
\(A=\left(11x^4y^3z^2-3x^4y^3z^2+8x^4y^3z^2\right)+\left(20x^2yz+10x^2yz\right)-4xy^2z-2008xyz^2\)
\(A=30xy^2z-4xy^2z-2008xyz^2\)
Bậc của A là 3
b, \(A=30xy^2z-4xy^2z-2008xyz^2\)
\(A=2xyz\left(15x-2y-1004z\right)\)
mà 15x - 2y = 1004z
=> 15x - 2y - 1004z = 0
Thay vào ta có:
A = 2xyz . 0 = 0
Vậy giá trị của A là 0 nếu 15x - 2y = 1004z
17
bậc của đơn thức là tổng các số mũ của biến
⇒ 6+3+8= 17
bậc của đơn thức trên là 17