\(\frac{1}{3}\)= \(\frac{1}{a}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2019

1/3=1/4+1/12

nhé

5 tháng 3 2019

mik cần lời giải chi tiết nhé

5 tháng 7 2017

Bài 2: 

a, 1/3 + 1/2 : x = -4

=> 1/2 : x = -4 - 1/3 

=> 1/2 : x = -13/3

=> x = 1/2 ; -13/3

=> x = -3/26

Vậy x = -3 / 26

5 tháng 7 2017

Bài 2: 

b, x2 - 4x = 0

=> x.(x - 4) =0

=> x=0 hoặc x - 4 = 0

x - 4= 0 => x=4

Vậy x=0 và x=4

4 tháng 9 2019

Giải giúp mình nhé

Mình đang cần gấp

4 tháng 9 2019

Bài 1

\(a,\left|x\right|=-\left|-\frac{5}{7}\right|=>x\in\varnothing\)

\(b,\left|x+4,3\right|-\left|-2,8\right|=0\)

\(=>\left|x+4,3\right|-2,8=0\)

\(=>\left|x+4,3\right|=0+2,8=2,8\)

\(=>x+4,3=\pm2,8\)

\(=>\hept{\begin{cases}x+4,3=2,8\\x+4,3=-2,8\end{cases}=>\hept{\begin{cases}x=-1,5\\x=-7,1\end{cases}}}\)

\(c,\left|x\right|+x=\frac{2}{3}\)

\(=>\hept{\begin{cases}x+x=\frac{2}{3}\\-x+x=\frac{2}{3}\end{cases}}=>\hept{\begin{cases}x=\frac{1}{3}\\x=-\frac{1}{3}\end{cases}}\)

31 tháng 5 2016

1.

a.

\(\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{7}\right)\)

\(=\frac{1}{3}+\frac{1}{5}-\frac{1}{7}\)

\(=\frac{35-21-15}{105}\)

\(=-\frac{1}{105}\)

b.

\(\frac{3}{5}-\left(\frac{3}{4}-\frac{1}{2}\right)\)

\(=\frac{3}{5}-\frac{3}{4}+\frac{1}{2}\)

\(=\frac{12-15+10}{20}\)

\(=\frac{7}{20}\)

c.

\(\frac{4}{7}-\left(\frac{2}{5}+\frac{1}{3}\right)\)

\(=\frac{4}{7}-\frac{2}{5}-\frac{1}{3}\)

\(=\frac{60-42-35}{105}\)

\(=-\frac{17}{105}\)

2.

a.

\(S=-\frac{1}{1\times2}-\frac{1}{2\times3}-\frac{1}{3\times4}-...-\frac{1}{\left(n-1\right)\times n}\)

\(S=-\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{\left(n-1\right)\times n}\right)\)

\(S=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(S=-\left(1-\frac{1}{n}\right)\)

\(S=-1+\frac{1}{n}\)

b.

\(S=-\frac{4}{1\times5}-\frac{4}{5\times9}-\frac{4}{9\times13}-...-\frac{4}{\left(n-4\right)\times n}\)

\(S=-\left(\frac{4}{1\times5}+\frac{4}{5\times9}+\frac{4}{9\times13}+...+\frac{4}{\left(n-4\right)\times n}\right)\)

\(S=-\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{n-4}-\frac{1}{n}\right)\)

\(S=-\left(1-\frac{1}{n}\right)\)

\(S=-1+\frac{1}{n}\)

Chúc bạn học tốtok

 

19 tháng 9 2019

Ta có: \(B=\frac{1}{2016}+\frac{2}{2015}+\frac{3}{2014}+...+\frac{2015}{2}+\frac{2016}{1}\)

\(B=1+\left(\frac{1}{2016}+1\right)+\left(\frac{2}{2015}+1\right)+\left(\frac{3}{2014}+1\right)+...+\left(\frac{2015}{2}+1\right)\)

\(B=\frac{2017}{2017}+\frac{2017}{2016}+\frac{2017}{2015}+\frac{2017}{2014}+...+\frac{2017}{2}\)

\(B=2017.\left(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+...+\frac{1}{2}\right)\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}{2017.\left(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+...+\frac{1}{2}\right)}\)

\(\Rightarrow\frac{A}{B}=\frac{1}{2017}.\)

Chúc bạn học tốt!

15 tháng 12 2019

Này Vũ Minh Tuấn, mk cũng có 1 bài cũng gần giống như thế này nhưng khác 1 tí cậu giải giúp mk vs

30 tháng 7 2018

Cảm ơn những bạn đã gửi câu trả lời cho mình :D

30 tháng 7 2018

1) Ta có : \(\frac{x}{5}=\frac{y}{4}=\frac{2x}{10}=\frac{2x+y}{10+4}=\frac{28}{14}=2\)

Nên : \(\frac{x}{5}=2\Rightarrow x=10\)

         \(\frac{y}{4}=2\Rightarrow y=8\)

6 tháng 1 2017

A = 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ... + 1/149 - 1/150

A = (1 + 1/3 + 1/5 + ... + 1/149) - (1/2 + 1/4 + 1/6 + ... + 1/150)

A = (1 + 1/2 + 1/3 +1/4 + 1/5 + 1/6 + ... + 1/149 + 1/150 - 2.(1/2 + 1/4 + 1/6 + ... + 1/150)

A = (1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + ... + 1/149 + 1/150) - (1 + 1/2 + 1/3 + ... + 1/75)

A =1/76 + 1/77 + 1/78 + ... + 1/150

=> A/B = 1

27 tháng 9 2020

a) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.........+\frac{2}{x\left(x+1\right)}=\frac{1998}{2000}\)

\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+.......+\frac{2}{x\left(x+1\right)}=\frac{1998}{2000}\)

\(\Leftrightarrow2.\left[\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+......+\frac{1}{x\left(x+1\right)}\right]=\frac{1998}{2000}\)

\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{x\left(x+1\right)}=\frac{999}{2000}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+......+\frac{1}{x}-\frac{1}{x+1}=\frac{999}{2000}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{999}{2000}\)\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2000}\)

\(\Leftrightarrow x+1=2000\)\(\Leftrightarrow x=1999\)

Vậy \(x=1999\)

b) \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+......+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)

\(\Leftrightarrow\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+.....+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{15.2}{93}\)

\(\Leftrightarrow\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+......+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)

\(\Leftrightarrow\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)

\(\Leftrightarrow\frac{1}{2x+3}=\frac{1}{93}\)\(\Leftrightarrow2x+3=93\)

\(\Leftrightarrow2x=90\)\(\Leftrightarrow x=45\)

Vậy \(x=45\)