K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

đẳng thức, mà không có dấu bằng???????????

20 tháng 7 2016

MK DANG CAN GAP LAM .AI BIET THI GIUP VOI

20 tháng 7 2016

A=( a2 + b2 + c2 )2 - ( a2 - b2 + c2 )2=(a^2+b^2+c^2-a^2+b^2-c^2)(a^2+b^2+c^2+a^2-b^2+c^2)=2(b^2+c^2).2.(a^2+c^2)=4(b^2+c^2)(a^2+c^2)

B=( a + b + c )2 + ( a + b - c)2 - 2 ( a + b )2=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2-2ab-2bc+2ac-2a^2-2ab-2b^2=b^2+2bc+c^2=(b+c)^2

câu C làm tương tự

30 tháng 9 2018

Câu 4 : 

       Ta có : a+b+c=0

​​=> a+b=-c

Lại có : a3+b3=(a+b)3-3ab(a+b)

=> a3+b3+c3=(a+b)3-3ab(a+b)+c3

                    =-c3-3ab. (-c)+c3

                    =3abc

Vậy a3+b3+c3=3abc với a+b+c=0

a: \(=a^2+2a\left(b-c\right)+\left(b-c\right)^2+a^2-2a\left(b-c\right)+\left(b-c\right)^2-2\left(b-c\right)^2\)

\(=2a^2+2\left(b-c\right)^2-2\left(b-c\right)^2=2a^2\)

b: \(=a^2+2a\left(b+c\right)+\left(b+c\right)^2+a^2-2a\left(b+c\right)+\left(b+c\right)^2+\left(b-c-a\right)^2+\left(c-a-b\right)^2\)

\(=2a^2+2\left(b+c\right)^2+\left(a-b+c\right)^2+\left(a+b-c\right)^2\)

\(=2a^2+2\left(b+c\right)^2+a^2-2a\left(b-c\right)+\left(b-c\right)^2+a^2+2a\left(b-c\right)+\left(b-c\right)^2\)

\(=2a^2+2\left(b+c\right)^2+2a^2+2\left(b-c\right)^2\)

\(=4a^2+2\left(b^2+2bc+c^2+b^2-2bc+c^2\right)\)

\(=4a^2+4b^2+4c^2\)

 

24 tháng 8 2015

a2 + b+ (a + b)= c+ d2 + (c +d)2 => 2.(a+ b2) + 2ab = 2.(c+ d2) + 2cd

=> a+ b+ ab = c+ d+ cd   (1)

+) a+ b+ (a + b)4 = (a2 + b2)2  - 2a2.b2 + (a + b)4 = [(a+ b2)2 - a2.b2] + [(a + b)- a2.b2]

= (a2 + b2 - ab). (a2 + b2 + ab) +  [(a + b)2 - ab].[(a+ b)+ ab]

=  (a2 + b- ab). (a+ b2 + ab) + (a2 + b2 + ab). (a2 + b+ 3ab) = (a+ b+ ab). [(a2 + b- ab) + (a2 + b2 + 3ab)]

= 2.(a+ b2 + ab).(a2 + b2 + ab) = 2.(a2 + b2 + ab)2           (2)

Tương tự: c+ d4 + (c+d)4 = 2. (c2 + d2 + cd)2   (3)

Từ (1)(2)(3) => đpcm

11 tháng 8 2017

a. \(\left(3x-5\right)^2-\left(x+1\right)^2=0\Leftrightarrow\left(3x-5+x+1\right)\left(3x-5-x-1\right)=0\Leftrightarrow\left(4x-4\right)\left(2x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}4x-4=0\\2x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Vậy ...

b. \(\left(5x-4\right)^2-49x^2=0\Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy ...

c. \(4x^3-36x=0\Leftrightarrow4x\left(x^2-9\right)=0\Leftrightarrow4x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}4x=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)

Vậy ...

d. \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\Leftrightarrow\left(2x+3\right)\left(x-1\right)-\left(2x-3\right)\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(2x+3-2x+3\right)=0\Leftrightarrow6\left(x-1\right)=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy ...

12 tháng 8 2017

cam on

AH
Akai Haruma
Giáo viên
13 tháng 7 2024

Lời giải:

$a+b=c+d$

$(a+b)^2=(c+d)^2\Rightarrow a^2+b^2+2ab=c^2+d^2+2cd$

$\Rightarrow ab=cd\Rightarrow \frac{a}{d}=\frac{c}{b}$.

Đặt $\frac{a}{d}=\frac{c}{b}=k$

$\Rightarrow a=dk; c=bk$. Khi đó:

$a+b=c+d$

$\Leftrightarrow dk+b=bk+d$

$\Leftrightarrow k(d-b)=d-b$

$\Leftrightarrow (d-b)(k-1)=0$

$\Rightarrow d=b$ hoặc $k=1$.

Nếu $b=d$ thì do $ab=cd\Rightarrow a=c$.

$\Rightarrow b^{2013}=d^{2013}; a^{2013}=c^{2013}$

$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$

Nếu $k=1\Rightarrow a=d; b=c$

$\Rightarrow a^{2013}=d^{2013}; b^{2013}=c^{2013}$

$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$

AH
Akai Haruma
Giáo viên
13 tháng 7 2024

Lời giải:

$a+b=c+d$

$(a+b)^2=(c+d)^2\Rightarrow a^2+b^2+2ab=c^2+d^2+2cd$

$\Rightarrow ab=cd\Rightarrow \frac{a}{d}=\frac{c}{b}$.

Đặt $\frac{a}{d}=\frac{c}{b}=k$

$\Rightarrow a=dk; c=bk$. Khi đó:

$a+b=c+d$

$\Leftrightarrow dk+b=bk+d$

$\Leftrightarrow k(d-b)=d-b$

$\Leftrightarrow (d-b)(k-1)=0$

$\Rightarrow d=b$ hoặc $k=1$.

Nếu $b=d$ thì do $ab=cd\Rightarrow a=c$.

$\Rightarrow b^{2013}=d^{2013}; a^{2013}=c^{2013}$

$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$

Nếu $k=1\Rightarrow a=d; b=c$

$\Rightarrow a^{2013}=d^{2013}; b^{2013}=c^{2013}$

$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$

16 tháng 9 2017

Phân tích ra hết nhé sẽ ra kết quả