K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2016

Vì \(\left(2a+1\right)^2\ge0;\left(b+3\right)^4\ge0;\left(5c-6\right)^4\ge0\)

\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\ge0\)

Mà theo đề bài: \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\le0\)

\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2=0\)

\(\Rightarrow\begin{cases}\left(2a+1\right)^2=0\\\left(b+3\right)^4=0\\\left(5c-6\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}2a+1=0\\b+3=0\\5c-6=0\end{cases}\)\(\Rightarrow\begin{cases}2a=-1\\b=-3\\5c=6\end{cases}\)\(\Rightarrow\begin{cases}a=\frac{-1}{2}\\b=-3\\c=\frac{6}{5}\end{cases}\)

Vậy \(a=\frac{-1}{2};b=-3;c=\frac{6}{5}\)

25 tháng 9 2023

\(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\)  (1)

Do \(\left(2a+1\right)^2\ge0\)

\(\left(b+3\right)^4\ge0\)

\(\left(5c-6\right)^2\ge0\)

\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\ge0\forall a,b,c\in R\)

\(\left(1\right)\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2=0\)

\(\Rightarrow\left(2a+1\right)^2=0;\left(b+3\right)^4=0;\left(5c-6\right)^2=0\)

*) \(\left(2a+1\right)^2=0\)

\(\Rightarrow2a+1=0\)

\(2a=-1\)

\(a=-\dfrac{1}{2}\)

*) \(\left(b+3\right)^4=0\)

\(\Rightarrow b+3=0\)

\(b=-3\)

*) \(\left(5c-6\right)^2=0\)

\(\Rightarrow5c-6=0\)

\(5c=6\)

\(c=\dfrac{6}{5}\)

Vậy \(a=-\dfrac{1}{2};b=-3;c=\dfrac{6}{5}\)

22 tháng 8 2017

tất cả đều mũ chẳn nên lớn hơn hoặc bằng 0 => để thõa mãn các tổng cộng lại bằng 0 => mỗi tổng bằng 0 

22 tháng 8 2017

a, Vì \(\hept{\begin{cases}\left(12a-9\right)^2\ge0\\\left(8b+1\right)^4\ge0\\\left(c+15\right)^6\ge0\end{cases}\Rightarrow\left(12a-9\right)^2+\left(8b+1\right)^4+\left(c+15\right)^6\ge0}\)

Mà \(\left(12a-9\right)^2+\left(8b+1\right)^4+\left(c+15\right)^6\le0\)

\(\Rightarrow\hept{\begin{cases}\left(12a-9\right)^2=0\\\left(8b+1\right)^4=0\\\left(c+15\right)^6=0\end{cases}\Rightarrow\hept{\begin{cases}a=\frac{3}{4}\\b=\frac{-1}{8}\\c=-15\end{cases}}}\)

b, tương tự a

27 tháng 6 2021

a, Ta thấy : \(\left\{{}\begin{matrix}\left(2a+1\right)^2\ge0\\\left(b+3\right)^2\ge0\\\left(5c-6\right)^2\ge0\end{matrix}\right.\)\(\forall a,b,c\in R\)

\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\ge0\forall a,b,c\in R\)

\(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\le0\)

Nên trường hợp chỉ xảy ra là : \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2=0\)

- Dấu " = " xảy ra \(\left\{{}\begin{matrix}2a+1=0\\b+3=0\\5c-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{2}\\b=-3\\c=\dfrac{6}{5}\end{matrix}\right.\)

Vậy ...

b,c,d tương tự câu a nha chỉ cần thay số vào là ra ;-;

27 tháng 6 2021

ok

31 tháng 8 2017

Ta có : \(\frac{x+1}{x-4}>0\) 

Thì sảy ra 2 trường hợp 

Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4 

Vậy x > 4 

Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4 

Vậy x < (-1) . 

31 tháng 8 2017

Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)

Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)

Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)

20 tháng 9 2018

a, \(\left(x-3\right)\left(x+2\right)>0\)

th1 : \(\hept{\begin{cases}x-3>0\\x+2>0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x>-2\end{cases}\Rightarrow}x>3}\)

th2 : \(\hept{\begin{cases}x-3< 0\\x+2< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x< -3\end{cases}\Rightarrow}x< -3}\)

vậy x > 3 hoặc x < -3

b, \(\left(x+5\right)\left(x+1\right)< 0\)

th1 : \(\hept{\begin{cases}x+5>0\\x+1< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-5\\x< -1\end{cases}\Rightarrow x\in\left\{-4;-3;-2\right\}}}\)

th2 : \(\hept{\begin{cases}x+5< 0\\x+1>0\end{cases}\Rightarrow\hept{\begin{cases}x< -5\\x>-1\end{cases}\Rightarrow}x\in\varnothing}\)

vậy x = -4; -3; -2

c, \(\frac{x-4}{x+6}\le0\)

xét \(\frac{x-4}{x+6}=0\)

\(\Rightarrow x-4=0;x\ne-6\)

\(\Rightarrow x=4\ne-6\)

xét \(\frac{x-4}{x+5}< 0\)

th1 : \(\hept{\begin{cases}x-4< 0\\x+5>0\end{cases}\Rightarrow\hept{\begin{cases}x< 4\\x>-5\end{cases}\Rightarrow}x\in\left\{3;2;1;0;-1;-2;-3;-4\right\}}\)

th2 : \(\hept{\begin{cases}x-4>0\\x+5< 0\end{cases}\Rightarrow\hept{\begin{cases}x>4\\x< -5\end{cases}\Rightarrow x\in\varnothing}}\)

d tương tự c

20 tháng 9 2018

\(\frac{\left(x-6\right)}{x-7}\ge0\)

Th1: x - 6 < 0

<=> x - 6 + 6 < 0 + 6

<=> x - 6 + 6 > 0 + 6

=> x < 6

Th2: x - 7

<=> x - 7 + 7 < 0 + 7

<=> x - 7 + 7 > 0 + 7

=> x > 7

=> x < 6 hoặc x > 7

17 tháng 6 2018

a, \(\left|3x-4\right|+\left|3y+5\right|=0\)

Ta có :

\(\left|3x-4\right|\ge0\forall x;\left|3y+5\right|\ge0\forall x\\ \)

\(\Rightarrow\left|3x-4\right|+\left|3y+5\right|\ge0\forall x\\ \Rightarrow\left\{{}\begin{matrix}3x-4=0\\3y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=4\\3y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=-\dfrac{5}{3}\end{matrix}\right.\\ Vậy.........\)

b, \(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\)

Ta có :

\(\left|x+\dfrac{19}{5}\right|\ge0\forall x;\left|y+\dfrac{1890}{1975}\right|\ge0\forall y;\left|z-2004\right|\ge0\forall z \)

\(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|\ge0\forall x;y;z\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{19}{5}=0\\y+\dfrac{1890}{1975}=0\\z-2004=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{19}{5}\\y=-\dfrac{1890}{1975}\\z=2004\end{matrix}\right.\\ Vậy............\)

c, \(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\)

Ta có : \(\left|x+\dfrac{9}{2}\right|\ge0\forall x;\left|y+\dfrac{4}{3}\right|\ge0\forall y;\left|z+\dfrac{7}{2}\right|\ge0\forall z\)

\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x;y;z\)

\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{9}{2}\\y=-\dfrac{4}{3}\\z=-\dfrac{7}{2}\end{matrix}\right.\\ Vậy............\)

d, \(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\)

Ta có :

\(\left|x+\dfrac{3}{4}\right|\ge0\forall x;\left|y-\dfrac{1}{5}\right|\ge0\forall y;\left|x+y+z\right|\ge0\forall x;y;z\)

\(\Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x;y;z\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{4}\\y=\dfrac{1}{5}\\z=0-\dfrac{1}{5}+\dfrac{3}{4}=\dfrac{11}{20}\end{matrix}\right.\\ Vậy.......\)

e, Câu cuối bn làm tương tự như câu a, b, c nhé!

17 tháng 6 2018

bạn ơi cho mình hỏi là chứ A viết ngược kia là gì vậy ạ?

Ta có \(\left|3a+1\right|\ge0\)       \(\forall a\)

\(\left(3b-1\right)^{106}\ge0\)      \(\forall b\)

\(\left(\frac{1}{6}-2c\right)^{20}\ge0\)     \(\forall c\)

=> \(\left|3a+1\right|+\left(3b-1\right)^{106}+\left(\frac{1}{6}-2c\right)^{20}\ge0\)     \(\forall a,b,c\)

mà \(\left|3a+1\right|+\left(3b-1\right)^{106}+\left(\frac{1}{6}-2c\right)^{20}\le0\)

\(\Leftrightarrow\left|3a+1\right|\left(3b-1\right)^{106}+\left(\frac{1}{6}-2c\right)^{20}=0\)

\(\Leftrightarrow\hept{\begin{cases}\left|3a+1\right|=0\\\left(3b-1\right)^{106}=0\\\left(\frac{1}{6}-2c\right)^{20}=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}3a+1=0\\3b-1=0\\\frac{1}{6}-2c=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=-\frac{1}{3}\\b=\frac{1}{3}\\c=\frac{1}{12}\end{cases}}\)

14 tháng 11 2019

Thank you very much