Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
\(\frac{2a}{3}=\frac{3b}{4}=\frac{4c}{5}=\frac{12a}{18}=\frac{12b}{16}=\frac{12c}{15}=\frac{a}{18}=\frac{b}{16}=\frac{c}{15}\)
áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{a}{18}=\frac{b}{16}=\frac{c}{15}=\frac{a+b+c}{18+16+15}=\frac{49}{49}=1\)
\(\frac{a}{18}=1\Rightarrow a=18\)
\(\frac{b}{16}=1\Rightarrow b=16\)
\(\frac{c}{15}=1\Rightarrow c=15\)
ta có :
\(\frac{2a}{3}=\frac{3b}{4}=\frac{4c}{5}=\frac{12a}{18}=\frac{12b}{16}=\frac{12c}{15}=\frac{a}{18}=\frac{b}{16}=\frac{c}{15}\)
áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{a}{18}=\frac{b}{16}=\frac{c}{15}=\frac{a+b+c}{18+16+15}=\frac{49}{49}=1\)
\(\frac{a}{18}=1\Rightarrow a=18\)
\(\frac{b}{16}=1\Rightarrow b=16\)
\(\frac{c}{15}=1\Rightarrow c=15\)
a) Ta có : \(\frac{2a}{3}=\frac{3b}{4}=\frac{4c}{5}\)\(\Rightarrow\frac{12a}{18}=\frac{12b}{16}=\frac{12c}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{12a}{18}=\frac{12b}{16}=\frac{12c}{15}=\frac{12a+12b+12c}{18+16+15}=\frac{12\left(a+b+c\right)}{49}=\frac{12.49}{49}=12\)
\(\Rightarrow\hept{\begin{cases}a=12.3:2=18\\b=12.4:3=16\\c=12.5:4=15\end{cases}}\)
KHông thể đổi em nhé: \(a=\frac{3}{4}b\Rightarrow\frac{a}{3}=\frac{b}{4}\)
Bài giải:
TH1: a = 0 => b = c = 0 => 0 + 0 + 0 = 6 loại
Th2: a \(\ne\)0 => b, c \(\ne\)0
Có: \(2a=3b=4c\Rightarrow\frac{2a}{abc}=\frac{3b}{abc}=\frac{4c}{abc}\Rightarrow\frac{2}{bc}=\frac{3}{ac}=\frac{4}{ab}\)
=> \(\frac{ab}{4}=\frac{bc}{2}=\frac{ac}{3}=\frac{ab+bc+ac}{4+2+3}=\frac{6}{9}=\frac{2}{3}\)
=> \(ab=\frac{8}{3}\); \(bc=\frac{4}{3}\); \(ac=2\)
Lại có: \(2a=4c\Rightarrow a=2c\)thay vào \(ac=2\)
=> \(2c.c=2\)=> \(c=\pm1\)
Với c = 1 => \(a=2;b=\frac{4}{3}\)
Với c = -1 => \(a=-2;b=-\frac{4}{3}\)
\(\frac{2a}{3}=\frac{3b}{4}=\frac{4c}{5}\) hay \(\frac{a}{\frac{3}{2}}=\frac{b}{\frac{4}{3}}=\frac{c}{\frac{5}{4}}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có: \(\frac{a}{\frac{3}{2}}=\frac{b}{\frac{4}{3}}=\frac{c}{\frac{5}{4}}=\frac{a+b+c}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
Suy ra \(a=12.\frac{3}{2}=18\);\(b=12.\frac{4}{3}=16\); \(c=12.\frac{5}{4}=15\)
Vậy ...
Ta có : \(\frac{2a}{3}=\frac{3b}{4}=\frac{4c}{5}\)
\(\Rightarrow\frac{12a}{18}=\frac{12b}{16}=\frac{12c}{15}=k\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(k=\frac{12a+12b+12c}{18+16+15}=\frac{12\left(a+b+c\right)}{49}\) \(=\frac{12.49}{49}=12\) ( vì \(a+b+c=49\))
Do đó : \(\frac{2a}{3}=12\Rightarrow2a=36\Rightarrow a=18\)
\(\frac{3b}{4}=12\Rightarrow3b=48\Rightarrow b=16\)
\(\Rightarrow\frac{4c}{5}=12\Rightarrow4c=60\Rightarrow c=15\)
Vậy \(a=18;b=16;c=15\)
Ta có :\(\frac{2a}{3}=\frac{3b}{4}=\frac{4c}{5}\)
\(\frac{a}{\frac{3}{2}}=\frac{b}{\frac{4}{3}}=\frac{2c}{\frac{5}{2}}\) \(=\frac{a-b+2c}{\frac{3}{2}-\frac{4}{3}+\frac{5}{2}}\)\(=\frac{6}{\frac{8}{3}}=\frac{9}{4}\)
\(\begin{cases}a=\frac{27}{8}\\b=3\\c=\frac{45}{8}\end{cases}\)
Lời giải:
Đặt $\frac{a-1}{2}=\frac{b+3}{4}=\frac{c-5}{6}=k$
$\Rightarrow a=2k+1, b=4k-3, c=6k+5$.
Khi đó:
$5a-3b-4c=50$
$\Rightarrow 5(2k+1)-3(4k-3)-4(6k+5)=50$
$\Rightarrow -26k=56\Rightarrow k=\frac{-28}{13}$
Suy ra:
$a=2k+1=2.\frac{-28}{13}+1=\frac{-43}{13}$
$b=4k-3=4.\frac{-28}{13}-3=\frac{-151}{13}$
$c=6k+5=6.\frac{-28}{13}+5=\frac{-103}{13}$
vì 2a/3=3b/4=4c/5 nên để chia hết cho 3,4,5 ta phải có hàng đơn vị ghép vào chia hết cho các số
24/3=32/4=40/5 hoặc 27/3=36/4=45/5
vậy a=4 hoặc 7
b=2 hoặc 6
c=0 hoặc 5