\(\frac{a}{5}=\frac{b}{4}\)và\(a^2-b^2=1\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016

\(\frac{a}{5}=\frac{b}{4}\\ \Rightarrow\frac{a^2}{25}=\frac{b^2}{16}=\frac{a^2-b^2}{25-16}=\frac{1}{9}\\ \Rightarrow a^2=\frac{25}{9}\\ \Rightarrow a=\frac{5}{3}\)

tự tính b nhé

b) Câu b tương tự câu a .

Nếu ko biết hỏi mình

18 tháng 12 2016

câu a bn làm kiểu j mik chẳng hiểu

14 tháng 2 2019

CÁC BÀI NÀY ĐỀU GIẢI THEO TÍNH CHẤT DÃY TỈ SỐ BẮNG NHAU

a) ta có: 2a = 3b; 5b = 7c

\(\Rightarrow\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)

\(\Rightarrow\frac{a}{21}=\frac{b}{14}\left(1\right);\frac{b}{14}=\frac{c}{10}\left(2\right)\)

VẾ (1) nhân cả 2 số với\(\frac{1}{7}\); VẾ (2) nhân cả hai số với \(\frac{1}{2}\)

\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)

\(\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)

ÁP DỤNG T/C DÃY TỈ SỐ BẰNG NHAU, TA CÓ:

\(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a+5c-7b}{63+50-98}=\frac{30}{15}=2\)

PHẦN SAU TỰ LÀM^-^

c) ÁP DỤNG T/C DÃY TỈ SỐ BẰNG NHAU TA CÓ:

   \(\frac{a}{3}=\frac{b+1}{4}=\frac{c+2}{5}=\frac{a-b-1+c+2}{3-4+5}=\frac{a-b+c+1}{4}=\frac{-17}{4}\)

PHẦN SAU TỰ LÀM^-^

9 tháng 8 2017

Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\)=>a= 2k, b= 3k , c=4k

a^2-b^2+2c^2=108 <=>(2k)^2 -(3k)^2 +2(4k)^2=108

                            <=>4k^2 -9k^2+2.16k^2=108

                            <=>4k^2-9k^2+32k^2=108

                            <=>k^2(4-9+32)=108

                            <=>27k^2=108

                            <=>k^2=4  <=> \(\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)

  • k=2 =>\(\hept{\begin{cases}x=4\\y=6\\z=8\end{cases}}\)
  • k=-2 =>\(\hept{\begin{cases}x=-4\\y=-6\\z=-8\end{cases}}\)
16 tháng 11 2016

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{a^2}{2^2}=\frac{b^2}{3^2}=\frac{2c^2}{2.4^2}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a^2}{2^2}=\frac{b^2}{3^2}=\frac{2c^2}{2.4^2}=\frac{a^2-b^2+2c^2}{4-9+2.4^2}=\frac{108}{27}=4=2^2\)

\(\Rightarrow\begin{cases}a^2=2^2.2^2=4^2\\b^2=2^2.3^2=6^2\\c^2=2^2.2.4^2:2=8^2\end{cases}\)\(\Rightarrow\begin{cases}a\in\left\{4;-4\right\}\\b\in\left\{6;-6\right\}\\c\in\left\{8;-8\right\}\end{cases}\)

Vậy giá trị (a;b;c) thỏa mãn đề bài là: (4;6;8) ; (-4;-6;-8)

 

16 tháng 11 2016

Giải:
Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\)

\(\Rightarrow a=2k,b=3k,c=4k\)

Ta có: \(a^2-b^2+2c^2=108\)

\(\Rightarrow\left(2k\right)^2-\left(3k\right)^2+2\left(4k\right)^2=108\)

\(\Rightarrow2^2.k^2-3^2.k^2+2.4^2.k^2=108\)

\(\Rightarrow4.k^2-9.k^2+32.k^2=108\)

\(\Rightarrow\left(4-9+32\right).k^2=108\)

\(\Rightarrow27.k^2=108\)

\(\Rightarrow k^2=4\)

\(\Rightarrow k=\pm2\)

+) \(k=2\Rightarrow a=4,b=6,d=8\)

+) \(k=-2\Rightarrow a=-4,b=-6,c=-8\)

Vậy bộ số \(\left(a;b;c\right)\)\(\left(4;6;8\right);\left(-4;-6;-8\right)\)

28 tháng 12 2016

a) có \(\frac{a}{5}=\frac{b}{4}\)=> \(\frac{a^2}{25}=\frac{b^2}{16}\)

áp dụng t/c dãy tỉ số bằng nhau có:

\(\frac{a^2}{25}=\frac{b^2}{16}=\frac{a^2-b^2}{25-16}=\frac{1}{9}\)

=>\(\hept{\begin{cases}a^2=\frac{1}{9}.25\\b^2=\frac{1}{9}.16\end{cases}}\)=>\(\hept{\begin{cases}a^2=\frac{25}{9}\\b^2=\frac{16}{9}\end{cases}}\)=>\(\hept{\begin{cases}a=\frac{5}{3};\frac{-5}{3}\\b=\frac{4}{3};\frac{-4}{3}\end{cases}}\)

mà a,b cùng dấu 

vậy : tự viết :))

28 tháng 12 2016

a) a2-b2=1 <=> (a-b)(a+b)=1  (1)

\(\frac{a}{5}=\frac{b}{4}=\frac{a-b}{1}=\frac{a+b}{9}\)=> a+b=\(\frac{9b}{4}\), và a-b=\(\frac{b}{4}\)

Thay vào (1): \(\frac{9b}{4}.\frac{b}{4}=1\)<=> b2=\(\frac{16}{9}=\left(\frac{4}{3}\right)^2\)=> b=\(\frac{4}{3}^{ }\)

a=\(\frac{5}{4}.\frac{4}{3}=\frac{5}{3}\)

19 tháng 8 2017

a) \(\frac{a-1}{2}=\frac{b+2}{3}=\frac{c-3}{4}=k\)

\(\Rightarrow\hept{\begin{cases}a=2k+1\\b=3k-2\\c=4k+3\end{cases}}\)thay vào \(3a-2b+c=-46\)

\(\Rightarrow3\left(2k+1\right)-2\left(3k-2\right)+4k+3=-46\)

\(\Leftrightarrow6k+3-\left(6k-4\right)+4k+3=-46\)

\(\Leftrightarrow4k+10=-46\Rightarrow4k=-56\Rightarrow k=-14\)

\(\Rightarrow\hept{\begin{cases}a=2.\left(-14\right)+1=-27\\b=3.\left(-14\right)-2=-44\\c=4.\left(-14\right)+3=-53\end{cases}}\)

Vậy \(a=-27;b=-44;c=-53\)

b) \(\frac{a}{2}=\frac{b}{5}\Rightarrow\frac{a}{6}=\frac{b}{15}\left(1\right)\)

\(\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{20}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}\)

\(\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}=\frac{a+b-c}{6+15-20}=\frac{12}{1}=12\)

\(\Rightarrow\hept{\begin{cases}a=12.6=72\\b=12.15=180\\c=12.20=240\end{cases}}\)

Vậy \(a=72;b=180;c=240\)

19 tháng 8 2017

a, \(\frac{a-1}{2}=\frac{b+2}{3}=\frac{c-3}{4}\)

\(\Rightarrow\frac{3a-3}{6}=\frac{2b+4}{6}=\frac{c-3}{4}=\frac{3a-3-2b-4+c-3}{6-6+4}=\frac{\left(3a-2b+c\right)-\left(3+4+3\right)}{4}=\frac{-46-10}{4}=-14\)

=> \(\hept{\begin{cases}\frac{a-1}{2}=-14\\\frac{b+2}{3}=-14\\\frac{c-3}{4}=-14\end{cases}}\Rightarrow\hept{\begin{cases}a=-27\\b=-44\\c=-53\end{cases}}\)

b) \(\hept{\begin{cases}\frac{a}{2}=\frac{b}{5}\Rightarrow\frac{a}{6}=\frac{b}{15}\\\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{20}\end{cases}\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}}=\frac{a+b-c}{6+15-20}=\frac{12}{1}=12\)

=> a = 72, b=180, c=240

28 tháng 7 2015

Ta có 

\(\frac{a}{2}=\frac{b}{c}=\frac{c}{4}\)

\(\Leftrightarrow\left(\frac{a}{2}\right)^2=\left(\frac{b}{c}\right)^2=\left(\frac{c}{4}\right)^2\)

\(\Leftrightarrow\frac{a^2}{2^2}=\frac{b^2}{c^2}=\frac{c^2}{4^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau là ra.              

1 tháng 1 2020

b) Ta có : \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và a2 - b2 + 2c2 = 108

\(\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)

⇒ a2 = 4.4 =16 ⇔ a = 4 hoặc -4

b2 = 4.9 = 36 ⇔ b= 6 hoặc -6

2c2 = 4 .32 ⇔ c2 = 64 ⇔ c = 8 hoặc -8

Vậy các cặp ( a ; b ; c ) thỏa mãn là : ( 4; 6; 8 ) ; ( -4 ; -6 ; -8 )