K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2018

2a = 3b

=> \(\frac{a}{3}=\frac{b}{2}\)

4b = 2c

=> \(\frac{b}{2}=\frac{c}{4}\)

\(=>\)\(\frac{a}{3}=\frac{b}{2}=\frac{c}{4}\)

=> \(\frac{a^3}{27}=\frac{b^3}{8}=\frac{c^3}{64}=\frac{abc}{24}=\frac{480}{24}=20\)

=> \(\hept{\begin{cases}a^3=27.20=540\\b^3=8.20=160\\c^3=64.20=1280\end{cases}}\)

=> \(\hept{\begin{cases}a=\sqrt[3]{540}\\b=\sqrt[3]{160}\\c=\sqrt[3]{1280}\end{cases}}\)

Hình như bạn chép sai đề

31 tháng 1 2019

\(\hept{\begin{cases}2a+3b+2c=5\\5a+4b+c=55\\a+b-4c=24\end{cases}}\Leftrightarrow8a+8b-c=5+55+24\)

\(\Leftrightarrow8a+8b-c=84\)

\(\Leftrightarrow8\left(a+b\right)-c=84\)

\(\Leftrightarrow8\left(a+b\right)=84+c\)

\(\Rightarrow a+b+c=84\)

\(\Rightarrow TBC\left(a,b,c\right)=\frac{84}{3}=28\)

3 tháng 8 2020

\(a=\frac{5}{3}b\)\(c=\frac{5}{6}b\)

\(\Rightarrow3.\frac{5}{6}b-2.\frac{5}{3}b=10\)

\(\Leftrightarrow\frac{-5}{6}b=10\)

\(\Leftrightarrow b=-12\)

b, Tương tự

3 tháng 8 2020

Bài làm:

a) \(3a=5b=6c\)

\(\Leftrightarrow\frac{a}{10}=\frac{b}{6}=\frac{c}{5}\)

Áp dụng t/c của dãy tỉ số bằng nhau:

\(\frac{a}{10}=\frac{b}{6}=\frac{c}{5}=\frac{3c-2a}{15-20}=\frac{10}{-5}=-2\)

\(\Rightarrow\hept{\begin{cases}a=-20\\b=-12\\c=-10\end{cases}}\)

b) Ta có: \(3a=4b\Leftrightarrow\frac{a}{4}=\frac{b}{3}\Leftrightarrow\frac{a}{20}=\frac{b}{15}\left(1\right)\)

và \(6b=5c\Leftrightarrow\frac{b}{5}=\frac{c}{6}\Leftrightarrow\frac{b}{15}=\frac{c}{18}\left(2\right)\)

Từ (1) và (2) => \(\frac{a}{20}=\frac{b}{15}=\frac{c}{18}\)

Áp dụng t/c của dãy tỉ số bằng nhau:

\(\frac{a}{20}=\frac{b}{15}=\frac{c}{18}=\frac{2c-3b+a}{36-45+20}=\frac{-22}{11}=-2\)

\(\Rightarrow\hept{\begin{cases}a=-40\\b=-30\\c=-36\end{cases}}\)

27 tháng 12 2015

\(2a=4b\Rightarrow\frac{a}{10}=\frac{b}{5}\)

\(3b=5c\Rightarrow\frac{b}{5}=\frac{c}{3}\)

\(\Leftrightarrow\frac{a}{10}=\frac{b}{5}=\frac{c}{3}=\frac{a+2b-3c}{10+2.5-3.3}=\frac{99}{11}=9\)

a=90

b=45

c=27

28 tháng 11 2017

chuyển kiểu gì vậy

15 tháng 3 2020

\(\hept{\begin{cases}2a+b+2c=6\\3a+4b-3c=4\end{cases}}\)\(\Rightarrow a+3b-5c=-2\)

\(\Rightarrow3b=-2+5c-a\)\(\Rightarrow3b+2a-4c=-2+5c-a+2a-4c\)

\(\Rightarrow P=-2+a+c\)

Lại có : \(2a+b+2c=6\Rightarrow2\left(a+c\right)\le6\)

\(\Rightarrow a+c\le3\)

\(\Rightarrow P\le-2+3=1\Rightarrow P\le1\)

Dấu " = " sảy ra \(\Leftrightarrow\hept{\begin{cases}b=0\\3a-3c=4\\2a+2c=6\end{cases}}\)\(\Rightarrow\hept{\begin{cases}b=0\\3a-3c=4\\3a+3c=9\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=\frac{13}{6}\\b=0\\c=\frac{5}{6}\end{cases}}\)

Chị chỉ tìm được Max thui 

19 tháng 3 2020

\(\hept{\begin{cases}2a+b+2c=6\\3a+4b-3c=4\end{cases}}\)

<=> \(\hept{\begin{cases}b+2c=6-2a\\4b-3c=4-3a\end{cases}}\)

<=> \(\hept{\begin{cases}c=\frac{20}{11}-\frac{5a}{11}\\b=\frac{26}{11}-\frac{12}{11}a\end{cases}}\)

P = \(2a+3\left(\frac{26}{11}-\frac{12}{11}a\right)-4\left(\frac{20}{11}-\frac{5a}{11}\right)\)

\(=-\frac{2}{11}+\frac{6}{11}a\ge-\frac{2}{11}\)

Dấu "=" xảy ra <=> a = 0 => c =20/11 và b = 26/11

Vậy min P = -2/11 tại a = 0; b = 26/11 và c= 20/11

6 tháng 12 2016

Giải:

Ta có: \(2a=4b\Rightarrow a=2b\Rightarrow\frac{a}{1}=\frac{b}{2}\Rightarrow\frac{a}{5}=\frac{b}{10}\)

\(3b=5c\Rightarrow\frac{b}{5}=\frac{c}{3}\Rightarrow\frac{b}{10}=\frac{c}{6}\)

\(\Rightarrow\frac{a}{5}=\frac{b}{10}=\frac{c}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{5}=\frac{b}{10}=\frac{c}{6}=\frac{2b}{20}=\frac{3c}{18}=\frac{a+2b-3c}{5+20-18}=\frac{99}{7}\)

+) \(\frac{a}{5}=\frac{99}{7}\Rightarrow a=\frac{495}{7}\)

+) \(\frac{b}{10}=\frac{99}{7}\Rightarrow b=\frac{990}{7}\)

+) \(\frac{c}{6}=\frac{99}{7}\Rightarrow c=\frac{594}{7}\)

Vậy bộ số \(\left(a;b;c\right)\)\(\left(\frac{495}{7};\frac{990}{7};\frac{594}{7}\right)\)

 

3a+4b-3c=4Tìm GTNN của biểu thức : A = 2a+3b-4c? ... Cho a;b;c là các số không âm thỏa mãn:2a+b=6-3c;3a+4b=3c+4.Tìm min ... T = a −2 b 2 a − b +2 a −3 b 2 a + b. Đọc tiếp. ..... cho a và b là hai số thực thỏa mãn 4a + b = 5ab và 2a>b>0.

15 tháng 8 2016

Đặt : \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)

\(\frac{2a+3b}{3a-4b}=\frac{2bk+3b}{3bk-4b}=\frac{b\left(2k+3\right)}{b\left(3k-4\right)}=\frac{2k+3}{3k-4}\)

\(\frac{2c+3d}{3c-4d}=\frac{2dk+3d}{3dk-4d}=\frac{d\left(2k+3\right)}{d\left(3k+4\right)}=\frac{2k+3}{3k-4}\)

Vậy \(\frac{2a+3b}{3a-4b}=\frac{2c+3d}{3c-4d}\) \(\left(đpcm\right)\)

15 tháng 8 2016

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

Ta có:

a = b.k

c = d.k

Theo bài ra ta có:
\(\frac{2a+3b}{3a-4b}=\frac{2.b.k+3.b}{3.b.k-4.b}=\frac{b\left(2.k+3\right)}{b.\left(3.k-4\right)}=\frac{2.k+3}{3.k-4}\)   (1)

\(\frac{2c+3d}{3c-4d}=\frac{2.d.k+3d}{3.d.k-4d}=\frac{d.\left(2.k+3\right)}{d.\left(3.k-4\right)}=\frac{2.k+3}{3.k-4}\)   (2)

Từ (1) và (2) suy ra \(\frac{2a+3b}{3a-4d}=\frac{2c+3d}{3c-4d}\Rightarrowđpcm\)

 

15 tháng 8 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(\frac{2a+3b}{3a-4b}=\frac{2bk+3b}{3bk-4b}=\frac{b\left(2k+3\right)}{b\left(3k-4\right)}=\frac{2k+3}{3k-4}\)

\(\frac{2c+3d}{3c-4d}=\frac{2dk+3d}{3dk-4d}=\frac{d\left(2k+3\right)}{d\left(3k-4\right)}=\frac{2k+3}{3k-4}\)

Vậy \(\frac{2a+3b}{3a-4b}=\frac{2c+3d}{3c-4d}\)(đpcm)