Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Đặt :
\(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có :
\(\dfrac{2a+7b}{3a-4b}=\dfrac{2bk+7b}{3bk-4b}=\dfrac{b\left(2k+7\right)}{b\left(3k-4\right)}=\dfrac{2k+7}{3k-4}\left(1\right)\)
\(\dfrac{2c+7d}{3c-4d}=\dfrac{2dk+7d}{3dk-4d}=\dfrac{d\left(2k+7\right)}{d\left(3k-4\right)}=\dfrac{2k+7}{3k-4}\)\(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)
b/ tương tự
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\) \(\dfrac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\dfrac{2a+2b+2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
Do \(\dfrac{2b+c-a}{a}=2\Rightarrow2b+c-a=2a\)
\(\Rightarrow2b+c-a+a=3a\)
\(\Rightarrow2b+c=3a\Rightarrow3a-2b=c\)
Lại do \(\dfrac{2c-b+a}{b}=2\) \(\Rightarrow2c-b+a=2b\)
\(\Rightarrow2c+a-3b=0\)
\(\Rightarrow3b-2c=a\)
Ta lại có \(\dfrac{2a+b-c}{c}=2\Rightarrow2a+b-c=2c\)
\(\Rightarrow2a+b-c+c=3c\)
\(\Rightarrow2a +b=3c\)
\(\Rightarrow3c-2a=b\)
Khi đó:
\(P=\dfrac{c.a.b}{2b.2c.2a}=\dfrac{1}{8}\) (đoạn này mk làm hơi tắt, nếu không hiểu thì nói mk nhé!)
Vậy \(P=\dfrac{1}{8}.\)
Chú ý: Ở tử của p/s phải là 3a \(-2b\) mới làm được bài này.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{3a-2b}{5}=\dfrac{2c-5a}{3}=\dfrac{5b-3c}{2}=\dfrac{5.\left(3a-2b\right)+3.\left(2c-5a\right)}{5.5+3.3}=\dfrac{-10b+6c}{34}=\)
\(=\dfrac{-5b+3c}{17}\)
Do đó: \(\dfrac{5b-3c}{14}=\dfrac{-5b+3c}{2}\)
Suy ra: \(5b-3c=0\Rightarrow b=\dfrac{3}{5}c\) và \(a=\dfrac{2}{5}c\)
Lại có: \(a+b+c=-50\Rightarrow\dfrac{2}{5}c+\dfrac{3}{5}c+c=-50\Rightarrow c=-25\)
\(\Rightarrow b=\dfrac{3}{5}.\left(-25\right)=-15\)
và \(a=\dfrac{2}{5}.\left(-25\right)=-10\)
Vậy \(\left\{{}\begin{matrix}a=-10\\b=-15\\c=-25\end{matrix}\right.\)
Chúc bạn học tốt!!!
Theo t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{3a-2b}{5}=\dfrac{2c-5a}{3}=\dfrac{5b-3c}{2}=\dfrac{5\left(3a-2b\right)\left(2c-5a\right)}{5.5+3.3}=\dfrac{-10b+6c}{34}=\dfrac{-5b+3c}{17}\)
\(\Leftrightarrow\dfrac{5b-3c}{2}=\dfrac{-5b+3c}{17}\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{3c}{5}\\a=\dfrac{2c}{5}\end{matrix}\right.\)
Mà \(a+b+c=-50\)
\(\Leftrightarrow\dfrac{2c}{5}+\dfrac{3c}{5}+c=-50\)
\(\Leftrightarrow2c=-50\)
\(\Leftrightarrow c=-25\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-15\\a=-10\end{matrix}\right.\)
Vậy ..
Từ giả thiết ta có \(\frac{15a-10b}{25}=\frac{6c-15}{9}=\frac{10b-6c}{4}\)
\(=\frac{0}{38}=0\)
(Theo t/c day ti so bang nhau)
Suy ra \(\hept{\begin{cases}15a-10b=0\\6c-15a=0\end{cases}\Rightarrow\hept{\begin{cases}3a-2b=0\\2c-5a=0\end{cases}}}\Rightarrow\hept{\begin{cases}b=\frac{3}{2}a\\c=\frac{5}{2}a\end{cases}}\)
Mà a^2+275=bc Suy ra \(^{a^2+275=\frac{15}{4}a^2\Rightarrow a^2=100\Rightarrow a=\pm10}\)
ĐS: a=10; b=15; c=25 và a=-10; b=-15; c=-25
Sửa chút \(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}\)
a) Có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{4a}{3b}=\frac{4c}{3d}\)
Áp dụng tỉ lệ thức ta có :
\(\frac{4a}{3b}=\frac{4c}{3d}\Rightarrow\)\(\frac{4a}{4c}=\frac{3b}{3d}\Rightarrow\frac{4a+3b}{4c+3d}=\frac{4c-3d}{4c-3d}\)
b) Có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{3b}=\frac{2c}{3d}\)
Áp dụng tỉ lệ thức ta có "
\(\frac{2a}{3b}=\frac{2c}{3d}\Rightarrow\frac{2a}{2c}=\frac{3b}{3d}\Rightarrow\frac{2a-3b}{2c-3d}=\frac{2a3b}{2c+3d}\Rightarrow\frac{2a-3b}{2a+3b}=\frac{2c-3d}{2c+3d}\)
Các câu còn lại bạn làm tương tự