Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
a2+b2+c2 = ab+bc+ca
<=> 2(a2+b2+c2)= 2(ab+bc+ca)
<=> (a - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ac + a2) = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0
<=> a = b = c
Thế vào pt thứ (2) ta được
a8 + b8 + c8 = 3
<=> 3a8 = 3
<=> a8 = 1
<=> a = b = c = 1(3) hoặc a = b = c = - 1(4)
Từ (3) => P = 1 + 1 - 1 = 1
Từ (4) => P = - 1 + 1 + 1 = 1
a)AM-GM:
\(a^4+a^4+b^4+c^4\ge4\sqrt[4]{a^4\cdot a^4\cdot b^4\cdot c^4}=4a^2bc\)
\(a^4+b^4+b^4+c^4\ge4ab^2c\)
\(a^4+b^4+c^4+c^4\ge4abc^2\)
Cộng vế theo vế ta được:
4\(\left(a^4+b^4+c^4+d^4\right)\ge4a^2bc+4ab^2c+4abc^2\)
\(\Leftrightarrow a^4+b^4+c^4+d^4\ge abc\left(a+b+c\right)\)
1 cách khác: \(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)
\(2\left(a^2b^2+b^2c^2+a^2c^2\right)\ge2\sqrt{a^2b^4c^2}+2\sqrt{b^2a^2c^4}+2\sqrt{a^4b^2c^2}\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2\ge ab^2c+abc^2+a^2bc=abc\left(a+b+c\right)\)
\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
tương tự với câu b
lại đây nào , hằng đẳng thức quen thuộc của chúng ta ơi: \(a^2+b^2+c^2\ge ab+bc+ca\)( cái này dễ chứng minh nha bạn, bạn có thể nhân hai vế với 2 hoặc tra mạng là có ngay nha). và chúng ta sẽ áp dụng công thức này vào biểu thức bên dưới
1 \(a^4+b^4+c^4=\left(a^2\right)^2+\left(b^2\right)^2+\left(c^2\right)^2\) \(\ge a^2b^2+b^2c^2+c^2a^2\ge ab^2c+abc^2+a^2bc\)\(=abc\left(a+b+c\right)\)
từ đẳng thức ta có đpcm
2 \(a^8+b^8+c^8=\left(a^4\right)^2+\left(b^4\right)^2+\left(c^4\right)^2\)\(\ge a^4b^4+b^4c^4+c^4a^4\ge a^2b^4c^2+a^2b^2c^4\)\(+a^4b^2c^2\)
\(=a^2b^2c^2\left(b^2+c^2+a^2\right)\)\(\ge a^2b^2c^2\left(ab+bc+ca\right)\)
từ đẳng thức ta có đpcm
trong suốt quá trình giải bài toán mình đều sử dụng công thức bên trên nhé. chúc bạn học tốt. kb và tk mk
\(A=\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}=abc\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
\(=8.\frac{3}{4}=6\)
.
a2 + b2 + c2 = ab + bc + ca
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0
<=> a = b = c
Thay vào a8 + b8 + c8 = 3 ta được: 3a8 = 3
=> a8 = 1
=> \(\left[{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\)
Vậy ...
thanks bn