\(ax^3+x^2-x+b\) chia het cho \(x^2+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2021

Đặt f(x) = ax3 + x2 - x + b

       g(x) = x2 + 3x + 2 = ( x + 1 )( x + 2 )

       h(x) là thương trong phép chia f(x) cho g(x)

f(x) chia hết cho g(x) <=> f(x) = g(x).h(x)

<=> ax3 + x2 - x + b = ( x + 1 )( x + 2 ).h(x) (*)

Với x = -1 => (*) <=> -a + 2 + b = 0 <=> -a + b = -2 (1)

Với x = -2 => (*) <=> -8a + 6 + b = 0 <=> -8a + b = -6 (2)

Từ (1) và (2) => Ta có hệ phương trình \(\hept{\begin{cases}-a+b=-2\\-8a+b=-6\end{cases}}\)

Giải hệ ta được a = 4/7 ; b = -10/7

Vậy ... 

Đặt \(f\left(x\right)=ax^3+x^2-x+b\)

Ta có :  \(f\left(x\right)⋮\left(x^2+3x+2\right)\)

\(\Leftrightarrow f\left(x\right)=\left(x^2+3x+2\right).Q\left(x\right)\)(với \(Q\left(x\right)\)là đa thức .)

\(=\left(x+1\right)\left(x+2\right).Q\left(x\right)\)

  • Với \(x=-1\)

Khi đó : \(f\left(-1\right)=0\)

\(\Rightarrow-a+1+1+b=0\)

\(\Rightarrow a-b-2=0\)

\(\Rightarrow a-b=2\left(1\right)\)

  • Với \(x=-2\)

Khi đó : \(f\left(-2\right)=-8a+4+2+b=0\)

\(\Rightarrow8a-b-6=0\)

\(\Rightarrow8a-b=6\left(2\right)\)

Lấy \(\left(2\right)-\left(1\right)\),vế với vế , ta được :

\(7a=4\)

\(\Rightarrow a=\frac{4}{7}\)

Thay \(a=\frac{4}{7}\)vào \(\left(1\right)\), ta được :

\(b=-\frac{10}{7}\)

Vậy \(a=\frac{4}{7};b=-\frac{10}{7}\)

31 tháng 10 2020

a) Đặt \(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)

\(\Rightarrow A=\left(x+y\right)\left(x+4y\right)\left(x+2y\right)\left(x+3y\right)+y^4\)

\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

Đặt \(x^2+5xy+5y^2=t\)

\(\Rightarrow A=\left(t+y^2\right)\left(t-y^2\right)+y^4=t^2-y^4+y^4\)

         \(=t^2=\left(x^2+5xy+5y^2\right)^2\)là số chính phương ( đpcm )

4 tháng 8 2016

a, n3 + 5

= n3 - n + 6n

= n.(n2 - 1) + 6n

= n.(n - 1).(n + 1) + 6n

Vì n.(n - 1).(n + 1) là tích 3 số tự nhiên liên tiếp => n.(n - 1).(n + 1) chia hết cho 2 và 3

Mà (2,3)=1 => n.(n - 1).(n + 1) chia hết cho 6, 6n chia hết cho 6

=> n3 + 5n chia hết cho 6 ( đpcm)

4 tháng 8 2016

a, n3 + 5

= n3 - n + 6n

= n.(n2 - 1) + 6n

= n.(n - 1).(n + 1) + 6n

Vì n.(n - 1).(n + 1) là tích 3 số tự nhiên liên tiếp => n.(n - 1).(n + 1) chia hết cho 2 và 3

Mà (2,3)=1 => n.(n - 1).(n + 1) chia hết cho 6, 6n chia hết cho 6

=> n3 + 5n chia hết cho 6 ( đpcm)

16 tháng 2 2019

jiren lâu lắm ko gặp

17 tháng 7 2018

Tham khảo nha bạn : http://lazi.vn/edu/exercise/xac-dinh-cac-hang-so-a-va-b-sao-cho-x4-ax-b-chia-het-cho-x2-4-x4-ax-bx-1-chia-het-cho-x2-1

7 tháng 12 2018

tao chx làm , yên tâm ik - sẽ ko ai tl m âu

7 tháng 12 2018

a) \(\left(27x^2+a\right):\left(3x+2\right)\) được thương là 9x -16 và dư a + 12

Để \(\left(27x^2+a\right)⋮\left(3x+2\right)\) thì số dư phải bằng 0

=> a + 12 = 0

=> a = -12

Bài b và c tham khảo cách làm tương tự ở đây

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

NV
18 tháng 9 2019

a/ \(f\left(x\right)⋮\left(x^2-1\right)\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(-1\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2-1+a+b=0\\-2-1-a+b=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=-1\\-a+b=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=1\end{matrix}\right.\)

b/ Tương tự câu a, ta có \(\left\{{}\begin{matrix}f\left(3\right)=0\\f\left(-3\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}9a+3b=-90\\9a-3b=72\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=-27\end{matrix}\right.\)

8 tháng 1 2016

cái gì??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

8 tháng 1 2016

bang 9 minh chac chan luon nha **** mik  nha