K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DC
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
VD
1
19 tháng 11 2020
a) \(x^3+x^2-x+a=\left(x^2-x+1\right)\left(x+2\right)+\left(a-2\right)\).
Đa thức trên chia hết cho \(x+2\) khi và chỉ khi a = 2.
b) \(x^3+ax^2+2x+b=\left(x^2+x+1\right)\left(x+1\right)+\left(a-2\right)x^2+\left(b-1\right)\) chia hết cho \(x^2+x+1\) khi và chỉ khi:
\(\frac{a-2}{1}=\frac{0}{1}=\frac{b-1}{1}\Leftrightarrow a=2;b=1\).
c) Tương tự.
1 tháng 9 2022
a: \(\Leftrightarrow10x^2-15x+8x-12+a+12⋮2x-3\)
=>a+12=0
=>a=-12
b: \(\Leftrightarrow ax^5-ax^4+\left(a+5\right)x^4-\left(a+5\right)x^3+\left(a+5\right)x^3-\left(a+5\right)x^2+\left(a+5\right)x^2-\left(a+5\right)x+\left(a+5\right)x-a-5+a-4⋮x-1\)
=>a-4=0
=>a=4
HP
0
x^2+x-1 2x^3+7x^2+ax+b 2x+5 2x^3+2x^2-2x 5x^2+(a+2)x+b 5x^2+5x-5 (a-3)x+(b+5)
Để \(A\left(x\right)⋮B\left(x\right)\)thì \(\left(a-3\right)x+\left(b+5\right)=0\)
\(\Rightarrow\hept{\begin{cases}a-3=0\\b+5=0\end{cases}}\Rightarrow\hept{\begin{cases}a=3\\b=-5\end{cases}}\)