K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2022

a: Để P là số nguyên thì \(\sqrt{x}-2+2⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2\in\left\{1;-1;2;-2\right\}\)

hay \(x\in\left\{9;1;16;0\right\}\)

b: Để P là só nguyên thì \(2\sqrt{x}+6-7⋮\sqrt{x}+3\)

=>\(\sqrt{x}+3\in\left\{1;-1;7;-7\right\}\)

=>căn x+3=7

=>căn x=4

=>x=16

c: Để P là số nguyên thì \(3\sqrt{x}-1⋮2\sqrt{x}+1\)

\(\Leftrightarrow6\sqrt{x}-2⋮2\sqrt{x}+1\)

=>\(6\sqrt{x}+3-5⋮2\sqrt{x}+1\)

=>\(2\sqrt{x}+1\in\left\{1;5\right\}\)

=>x=0 hoặc x=4

29 tháng 10 2022

a: Để P là số nguyên thì \(\sqrt{x}-2+2⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2\in\left\{1;-1;2;-2\right\}\)

hay \(x\in\left\{9;1;16;0\right\}\)

b: Để P là só nguyên thì \(2\sqrt{x}+6-7⋮\sqrt{x}+3\)

=>\(\sqrt{x}+3\in\left\{1;-1;7;-7\right\}\)

=>căn x+3=7

=>căn x=4

=>x=16

c: Để P là số nguyên thì \(3\sqrt{x}-1⋮2\sqrt{x}+1\)

\(\Leftrightarrow6\sqrt{x}-2⋮2\sqrt{x}+1\)

=>\(6\sqrt{x}+3-5⋮2\sqrt{x}+1\)

=>\(2\sqrt{x}+1\in\left\{1;5\right\}\)

=>x=0 hoặc x=4

25 tháng 10 2018

Mysterious Person giup mk nha

29 tháng 10 2022

a: Để P là số nguyên thì \(\sqrt{x}-2+2⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2\in\left\{1;-1;2;-2\right\}\)

hay \(x\in\left\{9;1;16;0\right\}\)

b: Để P là só nguyên thì \(2\sqrt{x}+6-7⋮\sqrt{x}+3\)

=>\(\sqrt{x}+3\in\left\{1;-1;7;-7\right\}\)

=>căn x+3=7

=>căn x=4

=>x=16

c: Để P là số nguyên thì \(3\sqrt{x}-1⋮2\sqrt{x}+1\)

\(\Leftrightarrow6\sqrt{x}-2⋮2\sqrt{x}+1\)

=>\(6\sqrt{x}+3-5⋮2\sqrt{x}+1\)

=>\(2\sqrt{x}+1\in\left\{1;5\right\}\)

=>x=0 hoặc x=4

27 tháng 10 2022

1: Sửa đề: \(B=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)

2: Để B<=-1/2 thì B+1/2<=0

=>-3/căn x+3+1/2<=0

=>-6+căn x+3<=0

=>căn x<=3

=>0<x<9

3: Để B là số nguyên thì \(\sqrt{x}+3=3\)

=>x=0

20 tháng 10 2018

1) +) ta có : \(C-\dfrac{1}{3}\Leftrightarrow\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{3}=\dfrac{3\sqrt{x}-x+\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{-\left(x-4\sqrt{x}+4\right)+3}{3\left(x+\sqrt{x}+1\right)}=\dfrac{-\left(\sqrt{x}-2\right)^2+3}{3\left(x+\sqrt{x}+1\right)}\)

không thể cm được đâu bn --> xem lại đề

2) +) ta có : \(D=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=1-\dfrac{3}{\sqrt{x}+2}\)

--> để \(D\in Z\Leftrightarrow\sqrt{x}+2\) là ước của 3 \(\Leftrightarrow\sqrt{x}+2\in\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow x=1\) vậy \(x=1\)

3) +) tương tự 2)

4) a) +) điều kiện xác định : \(x>0;x\ne4\)

ta có : \(A=\left(\dfrac{2}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}}\right):\dfrac{\sqrt{x}-2}{x+3\sqrt{x}}\)

\(\Leftrightarrow A=\left(\dfrac{2\sqrt{x}-\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)

b) ta có : \(A=3\Leftrightarrow\dfrac{\sqrt{x}-3}{\sqrt{x}-2}=3\Leftrightarrow\sqrt{x}-3=3\sqrt{x}-6\)

\(\Leftrightarrow2\sqrt{x}=3\Leftrightarrow\sqrt{x}=\dfrac{3}{2}\Leftrightarrow x=\dfrac{9}{4}\) vậy \(x=\dfrac{9}{4}\)

c) ta có : \(B=A.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{x-9}{x-4}=1-\dfrac{5}{x-4}\)

tương tự 2 )
\(\)

21 tháng 7 2018

cảm ơn bn ạ

30 tháng 11 2018

ĐK: x>0,x\(\ne4\)

a) Ta thay x=\(\dfrac{1}{4}\) vào \(A=\dfrac{6}{x+2\sqrt{x}}=\dfrac{6}{\dfrac{1}{4}+2\sqrt{\dfrac{1}{4}}}=\dfrac{6}{\dfrac{1}{4}+2.\dfrac{1}{2}}=\dfrac{6}{\dfrac{1}{4}+1}=6:\left(\dfrac{1}{4}+1\right)=6:\dfrac{5}{4}=6.\dfrac{4}{5}=\dfrac{24}{5}=4,8\)B=\(\dfrac{\sqrt{x}}{x-4}+\dfrac{2}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}=\dfrac{\sqrt{x}}{x-4}-\dfrac{2}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}=\dfrac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{6}{\left(2-\sqrt{x}\right)\left(\sqrt{x}+2\right)}=\dfrac{6}{4-x}\)

b) Ta có M=\(\dfrac{A}{B}=A\div B=\dfrac{6}{x+2\sqrt{x}}\div\dfrac{6}{4-x}=\dfrac{6}{x+2\sqrt{x}}.\dfrac{4-x}{6}=\dfrac{4-x}{x+2\sqrt{x}}=\dfrac{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{2-\sqrt{x}}{\sqrt{x}}\)

Ta lại có M>1\(\Leftrightarrow\dfrac{2-\sqrt{x}}{\sqrt{x}}>1\Leftrightarrow2-\sqrt{x}>\sqrt{x}\Leftrightarrow2>2\sqrt{x}\Leftrightarrow\sqrt{x}< 1\Leftrightarrow x< 1\)

Kết hợp với ĐK

Vậy 0<x<1 thì M>1

c) Ta có M\(=\dfrac{2-\sqrt{x}}{\sqrt{x}}=\dfrac{2}{\sqrt{x}}-1\)

Vậy để \(M\in Z\) thì \(\sqrt{x}\inƯ\left(2\right)\in\left\{\pm1;\pm2\right\}\)

\(\sqrt{x}>0\)

Nên \(\sqrt{x}\in\left\{1;2\right\}\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\left(tm\right)\\x=4\left(ktm\right)\end{matrix}\right.\)

Vậy x=1 thì M\(\in Z\)

30 tháng 11 2018

Nguyễn Việt LâmTrầNguyễn Thị Khánh Như Trương NgọcThảo Vyn Trung NguyênBonkingsaint suppapong udomkaewkanjanaPhạm TiếnKHUÊ VŨMysterious PersonThiên Hàn

Bài 1:

a: ĐKXĐ: 2x+3>=0 và x-3>0

=>x>3

b: ĐKXĐ:(2x+3)/(x-3)>=0

=>x>3 hoặc x<-3/2

c: ĐKXĐ: x+2<0

hay x<-2

d: ĐKXĐ: -x>=0 và x+3<>0

=>x<=0 và x<>-3

Bài 2: 

a: \(A=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-\left(5\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

b: Thay \(x=5-2\sqrt{6}\) vào A, ta được:

\(A=\dfrac{-5\left(\sqrt{3}-\sqrt{2}\right)+2}{\sqrt{3}-\sqrt{2}+3}=\dfrac{-5\sqrt{3}+5\sqrt{2}+2}{\sqrt{3}-\sqrt{2}+3}\simeq0,124\)

d: Để A=1/2 thì \(\sqrt{x}+3=-10\sqrt{x}+4\)

\(\Leftrightarrow11\sqrt{x}=1\)

hay x=1/121

23 tháng 7 2018

a) ĐKXĐ: \(x\ge0;x\ne9\) . Rút gọn: \(A=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{\sqrt{x}-3}-\dfrac{x-4\sqrt{x}+7}{x-2\sqrt{x}-3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{\sqrt{x}-3}-\dfrac{x-4\sqrt{x}+7}{x+\sqrt{x}-3\sqrt{x}-3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{\sqrt{x}-3}-\dfrac{x-4\sqrt{x}+7}{\sqrt{x}\left(\sqrt{x}+1\right)-3\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{\sqrt{x}-3}-\dfrac{x-4\sqrt{x}+7}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)+\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)-x+4\sqrt{x}-7}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{x-3\sqrt{x}-2\sqrt{x}+6+x+\sqrt{x}+3\sqrt{x}+3-x+4\sqrt{x}-7}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{x+3\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{x+\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)

23 tháng 7 2018

A>-1\(\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)>-1\(\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+1>0\Leftrightarrow\dfrac{\sqrt{x}+2+\sqrt{x}-3}{\sqrt{x}-3}>0\Leftrightarrow\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}>0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2\sqrt{x}-1>0\\\sqrt{x}-3>0\end{matrix}\right.\\\left\{{}\begin{matrix}2\sqrt{x}-1< 0\\\sqrt{x}-3< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}>0,5\\\sqrt{x}>3\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}< 0,5\\\sqrt{x}< 3\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0,25\\x>9\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0,25\\x< 9\end{matrix}\right.\end{matrix}\right.\Leftrightarrow}}\left[{}\begin{matrix}x>9\\0\le x< 0,25\end{matrix}\right.\)