K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2019

a, \(\left(a^2+b^2-2ab+2a-2b+1\right)+\left(b^2-2b+1\right)=0\)

=> \(\left(a-b+1\right)^2+\left(b-1\right)^2=0\)

Mà \(\left(a-b+1\right)^2\ge0,\left(b-1\right)^2\ge0\)

=> \(\hept{\begin{cases}a-b+1=0\\b=1\end{cases}\Rightarrow\hept{\begin{cases}a=0\\b=1\end{cases}}}\)

b,Tương tự 

\(\left(a-2b+1\right)^2+\left(b-1\right)^2=0\)

=>\(\hept{\begin{cases}a=1\\b=1\end{cases}}\)

27 tháng 12 2015

\(2a=4b\Rightarrow\frac{a}{10}=\frac{b}{5}\)

\(3b=5c\Rightarrow\frac{b}{5}=\frac{c}{3}\)

\(\Leftrightarrow\frac{a}{10}=\frac{b}{5}=\frac{c}{3}=\frac{a+2b-3c}{10+2.5-3.3}=\frac{99}{11}=9\)

a=90

b=45

c=27

28 tháng 11 2017

chuyển kiểu gì vậy

6 tháng 12 2016

Giải:

Ta có: \(2a=4b\Rightarrow a=2b\Rightarrow\frac{a}{1}=\frac{b}{2}\Rightarrow\frac{a}{5}=\frac{b}{10}\)

\(3b=5c\Rightarrow\frac{b}{5}=\frac{c}{3}\Rightarrow\frac{b}{10}=\frac{c}{6}\)

\(\Rightarrow\frac{a}{5}=\frac{b}{10}=\frac{c}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{5}=\frac{b}{10}=\frac{c}{6}=\frac{2b}{20}=\frac{3c}{18}=\frac{a+2b-3c}{5+20-18}=\frac{99}{7}\)

+) \(\frac{a}{5}=\frac{99}{7}\Rightarrow a=\frac{495}{7}\)

+) \(\frac{b}{10}=\frac{99}{7}\Rightarrow b=\frac{990}{7}\)

+) \(\frac{c}{6}=\frac{99}{7}\Rightarrow c=\frac{594}{7}\)

Vậy bộ số \(\left(a;b;c\right)\)\(\left(\frac{495}{7};\frac{990}{7};\frac{594}{7}\right)\)

 

22 tháng 7 2018

a)  \(3a=2b\)\(\Rightarrow\)\(\frac{a}{2}=\frac{b}{3}\) hay  \(\frac{a}{10}=\frac{b}{15}\)

\(4b=5c\)\(\Rightarrow\)\(\frac{b}{5}=\frac{c}{4}\)  hay  \(\frac{b}{15}=\frac{c}{12}\)

suy ra:   \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)

đến đây bạn áp dụng tính chất dãy tỉ số bằng nhau nha

b)  \(\left|x-1\right|+\left|y+\frac{2}{3}\right|+\left|x^2+xz\right|=0\)

Nhận thấy:   \(\left|x-1\right|\ge0\)    \(\left|y+\frac{2}{3}\right|\ge0;\) \(\left|x^2+xz\right|\ge0\)

suy ra:   \(\left|x-1\right|+\left|y+\frac{2}{3}\right|+\left|x^2+xz\right|\ge0\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(\hept{\begin{cases}x-1=0\\y+\frac{2}{3}=0\\x^2+xz=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=1\\y=-\frac{2}{3}\\z=-1\end{cases}}\)

Vậy....

bài 1: 

tìm a,b,c biết: 

3a = 2b; 4b = 3c và a + 2b - 3c 

giải 

\(3a=2b\Rightarrow\frac{a}{2}=\frac{b}{3};4b=3c\Rightarrow\frac{b}{3}=\frac{c}{4}\)

\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}\) và a + 2b - 3c 

áp dụng tính chất dãy tỉ số bằng nhau,ta có:

\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)

với \(\frac{a}{2}=5\Rightarrow a=5.2=10\)

với \(\frac{2b}{6}=5\Rightarrow b=\frac{5.6}{2}=15\)

với \(\frac{3c}{12}=5\Rightarrow c=\frac{5.12}{3}=20\)

vậy a = 10,b=15,c=20 

tương tự câu 2

30 tháng 12 2017

đố ai giải đc

16 tháng 4 2019

Thiếu đề <3