\(\sqrt{2}\);4-
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2023

Đồ thị hàn số y = a\(x\) + b đi qua các điểm A (\(\sqrt{2}\); 4 - \(\sqrt{2}\)) vàB (2; \(\sqrt{2}\))

       Thay tọa độ điểm A, B vào pt đồ thị ta có:

        \(\left\{{}\begin{matrix}\sqrt{2}.a+b=4-\sqrt{2}\\2a+b=2+\sqrt{2}\end{matrix}\right.\) 

      Trừ vế cho vế ta có:  2a + b - (\(\sqrt{2}\)a + b) = 2 + \(\sqrt{2}\) - (4 - \(\sqrt{2}\))

         2a + b - \(\sqrt{2}\)a - b   =  -2 + 2\(\sqrt{2}\)

        2a - \(\sqrt{2}\)a             = - 2 + 2\(\sqrt{2}\)

        a.(2 - \(\sqrt{2}\))         =      -2 + 2\(\sqrt{2}\)

        a                       = (-2 + 2\(\sqrt{2}\)) : (2 - \(\sqrt{2}\))

         a  = \(\sqrt{2}\)

         b = 2 + \(\sqrt{2}\) -  2\(\sqrt{2}\) 

         b = 2 - \(\sqrt{2}\)  

                                                       

                                                          

                 

 

                       

                      

 

23 tháng 4 2017

a) Hàm số đã cho là y = 2x + b.

Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.

Vậy hàm số đã cho là y = 2x - 3.

b) Hàm số đã cho là y = 3x + b.

Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.

Vậy hàm số đã cho là y = 3x - 4.

c) Vì đồ thị của hàm số đã cho song song với đường thẳng y = √3x nên nó có hệ số góc là a = √3. Do đó hàm số đã cho là y = √3x + b.

Vì đồ thị đi qua điểm B(1; √3 + 5) nên √3 + 5 = √3 . 1 + b. Suy ra b = 5.

Vậy hàm số đã cho là y = √3x + 5.

23 tháng 4 2017

Bài giải:

a) Hàm số đã cho là y = 2x + b.

Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.

Vậy hàm số đã cho là y = 2x - 3.

b) Hàm số đã cho là y = 3x + b.

Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.

Vậy hàm số đã cho là y = 3x - 4.

c) Vì đồ thị của hàm số đã cho song song với đường thẳng y = √3x nên nó có hệ số góc là a = √3. Do đó hàm số đã cho là y = √3x + b.

Vì đồ thị đi qua điểm B(1; √3 + 5) nên √3 + 5 = √3 . 1 + b. Suy ra b = 5.

Vậy hàm số đã cho là y = √3x + 5


NV
4 tháng 2 2020

Gọi pt đường thẳng có dạng \(y=ax+b\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{2}a+b=4-\sqrt{2}\\2a+b=\sqrt{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(2-\sqrt{2}\right)a=2\sqrt{2}-4\\2a+b=\sqrt{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=4+\sqrt{2}\end{matrix}\right.\)

7 tháng 2 2019

Gọi đths y = ax + b là (d) 

Vì \(\left(\sqrt{2};4-\sqrt{2}\right)\in\left(d\right)\Rightarrow4-\sqrt{2}=a\sqrt{2}+b\)

vì \(\left(2;\sqrt{2}\right)\in\left(d\right)\Rightarrow\sqrt{2}=2a+b\)

Ta có hệ \(\hept{\begin{cases}a\sqrt{2}+b=4-\sqrt{2}\\2a+b=\sqrt{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a\sqrt{2}-2a=4-\sqrt{2}-\sqrt{2}\\2a+b=\sqrt{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a\left(\sqrt{2}-2\right)=4-2\sqrt{2}\\2a+b=\sqrt{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=-2\\2.\left(-2\right)+b=\sqrt{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=-2\\b=4+\sqrt{2}\end{cases}}\)

29 tháng 3 2017

Vì đồ thị hàm số y=ax+b đi qua điểm(\(\sqrt{2}\) ; 4) và (2;\(\sqrt{2}\)) nên ta có hệ phương trình:\(\left\{{}\begin{matrix}4=\sqrt{2}a+b\\\sqrt{2}=2a+b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4\sqrt{2}=2a+\sqrt{2}b\\\sqrt{2}=2a+b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{2}=\left(\sqrt{2}-1\right)b\\\sqrt{2}=2a+b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{3\sqrt{2}}{\sqrt{2}-1}\\\sqrt{2}=2a+b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=6+3\sqrt{2}\\\sqrt{2}=2a+6+3\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=6+3\sqrt{2}\\a=-3-\sqrt{2}\end{matrix}\right.\)Vậy a=-3-\(\sqrt{2}\) và b=6+3\(\sqrt{2}\)

9 tháng 11 2016

a/ Hàm số đi qua A(2,7)

\(\Rightarrow7=-2a+5\)

\(\Leftrightarrow a=-1\)

b/ Thay \(x=1+\sqrt{3}\)\(y=4-\sqrt{3}\)ta được

\(4-\sqrt{3}=-\left(1+\sqrt{3}\right)a+5\)

\(\Leftrightarrow a=1\)

9 tháng 11 2016

ai giúp mình giải bài này vs

25 tháng 7 2019

Câu 1:

a,Bạn tự vẽ

b,Phương trình hoành độ giao điểm của (d1) và (d2) là:

\(\(\(-2x+3=x-1\Rightarrow-3x=-4\Rightarrow x=\frac{4}{3}\)\)\)

\(\(\(\Rightarrow y=\frac{4}{3}-1=\frac{1}{3}\)\)\)

Vậy tọa độ giao điểm của (d1) và (d2) là \(\(\(\left(\frac{4}{3};\frac{1}{3}\right)\)\)\)

c,Đường thẳng (d3) có dạng: y = ax + b

Vì (d3) song song với (d1) \(\(\(\Rightarrow\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\Rightarrow\hept{\begin{cases}a=-2\\b\ne3\end{cases}}\)\)\)

Khi đó (d3) có dạng: y = -2x + b

Vì (d3) đi qua điểm A( -2 ; 1) nên \(\(\(\Rightarrow x=-2;y=1\)\)\)

Thay x = -2 ; y = 1 vào (d3) ta được:\(\(\(1=-2.\left(-2\right)+b\Rightarrow b=-3\)\)\)

Vậy (d3) có phương trình: y = -2x - 3

Câu 2:

\(A=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}\left(a>0;b>0;a\ne b\right)\)(Đề chắc phải như này)

\(\(\(=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}.\frac{\sqrt{a}-\sqrt{b}}{1}\)\)\)

\(\(\(=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)\)\)

\(\(\(=\sqrt{a}^2-\sqrt{b}^2\)\)\)

\(\(\(=a-b\)\)\)

19 tháng 6 2019

1, \(x=13-4\sqrt{10}=\frac{26-8\sqrt{10}}{2}=\frac{10-2.4.\sqrt{10}+16}{2}=\frac{\left(\sqrt{10}-4\right)^2}{2}\)

Ta có: \(Q=x+\sqrt{5x}-2\sqrt{2x}-2\sqrt{10}\)

\(=\sqrt{x}\left(\sqrt{x}+\sqrt{5}\right)-2\sqrt{2}\left(\sqrt{x}+\sqrt{5}\right)\)

\(=\left(\sqrt{x}+\sqrt{5}\right)\left(\sqrt{x}-2\sqrt{2}\right)\)

\(=\left(\frac{4-\sqrt{10}}{\sqrt{2}}+\sqrt{5}\right)\left(\frac{4-\sqrt{10}}{\sqrt{2}}-2\sqrt{2}\right)\)

\(=\left(2\sqrt{2}-\sqrt{5}+\sqrt{5}\right)\left(2\sqrt{2}-\sqrt{5}-2\sqrt{2}\right)\)

\(=2\sqrt{2}.\left(-\sqrt{5}\right)=-2\sqrt{10}\)

19 tháng 6 2019

2, a,  Để đồ thị h/s  đi qua gốc tọa độ thì x=y=0

Ta có: \(-2m-1=0\Leftrightarrow m=\frac{-1}{2}\)

b, giao điểm của h/s y=x-2m-1 với trục hoành A(2m+1;0) với trục tung B(0;-2m-1)

Có: OA=2m+1; OB=|-2m-1|=2m+1

Áp dụng hệ thức lượng trong tam giác vuông coS:

\(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{\left(2m+1\right)^2}+\frac{1}{\left(2m+1\right)^2}=\frac{2}{\left(2m+1\right)^2}\)

\(\Leftrightarrow\frac{\left(2m+1\right)^2}{2}=\left(\frac{\sqrt{2}}{2}\right)^2=\frac{1}{2}\)

\(\Leftrightarrow\left(2m+1\right)^2=1\Leftrightarrow\orbr{\begin{cases}2m+1=1\\2m+1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}m=0\\m=-1\end{cases}}}\)

c, Hoành độ trung điểm I của AB là: \(x_I=\frac{x_A+x_B}{2}=\frac{2m+1}{2}\)

Tung độ trung điểm I của AB: \(y_I=\frac{y_A+y_B}{2}=\frac{-\left(2m+1\right)}{2}\)

Ta có: \(y_I=-x_I\)=> quỹ tích trung điểm I của AB là đường thẳng y=-x