Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để 13a+3 là số chính phương đặt 13.a + 3 = k² (k ∈ N) => a=1
<=>13.1+3=k2
13+3=k2
16=k2
=>k=4
=>a=16
a = 1
Khi đó 13a + 3 = 13 . 1 +3 = 16 = 42 (là số chính phương)
tích nha.
Vì n thuộc N* => n thuộc {1;2;3;4;...}
Ta xét các trường hợp sau :
+ nếu n=1
Khi đó : A=1!=1=12-là số chính phương ( thỏa mãn )
+ nếu n=2
Khi đó : A=1!+2!=1+1x2=3-không là số chính phương (loại)
+Nếu n=3
khi đó : A=1!+2!+3!=1+1x2+1x2x3=1+2+6=9=32-là số chính phương (thỏa mãn)
+Với n>hoặc=4
Ta có : A= 1!+2!+3!+4!=1+1x2+1x2x3+1x2x3x4=1+2+6+24=33 có chữ số tận cùng là 3
Mà 5!;6!;7!;...;n! có chữ số tận cùng là 0
=>A=1!+2!+3!+4!+...+n! có chữ số tận cùng là 3(với n>hoặc = 4)
Mà số chính phương không thể có chữ số tận cùng là 3
Nên A=1!+2!+3!+4!+...+n!không là số chính phương (với n> hoặc =4)
Vậy n thuộc { 1;3 } thì A=1!+2!+3!+...+n! là số chính phương
(+) Với n = 1
=> A=1 ( là số chính phương )
(+) Với n = 2
=> A = 3 ( không phải là số chính phương )
(+) ......
(+) Với \(n\ge4\)
Ta có : 1! + 2! + 3! + 4! = 33 có tận cúng là mà .
Mặt khhacs các số 5! ; 6! ; ... luôn có tận cùng = 0
=> A có tận cung là 3
Mà số chính phương không bao giờ có tận cùng là 3 .
=> n = 1
Vậ n = 1
Đặt a -6 =x2
a+6 = y2 (y>x)
=> y2 - x2 = a+6 - a+6 = 12
=>(y-x)(y+x) = 12 =1.12 = 2.6 = 3.4 ( vì y+x > y-x)
+ y -x = 1 và y+x = 12 => y =13/2 loại
+ y -x =2 và y+x =6 => y =4 ; x =2 (TM) => a -6 =22 => a =10
+y -x =3 ; y+x =4 => y =7/2 loại
Vậy a =10
13a+a=14a
Vậy số chính phưong nêu ở đề bài phải chia hết cho 14 để a thuộc N.
Chia hết cho 14 tương đương với chia hết cho 7 và 2.
Mình làm đến thế thôi còn a bạn tìm theo cách này nha!
TỪ GT =>14A LÀ SỐ CHÍNH PHƯƠNG =>A=142N+1 VÌ 14A SẼ BẰNG 14.142N+1=142(N+1)=(14N+1)2LÀ SỐ CHÍNH PHƯƠNG