Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
A = a2 + 10a + 1964
= a2 + 2 . a . 5 + 52 + 1939
= (a + 5)2 + 1939
Vì A là số chính phương nên đặt A = k2 (k \(\in\) Z) \(\Rightarrow1939=\left(k-a\right)\left(k+a\right)\)
Đến đây chỉ cần xét các ước của 1939 là xong (Cho biết 1939 = 7 . 277).
Do ab - ba là số chính phương. Suy ra ab >ab . suy ra a>b
ta có
ab - ba = 10a+b-10b-a=9a-9b=9*(a-b)=32*(a-b)
Để ab - ba là số chính phương thì a-b là số chính phương mà a-b<20
Suy ra a-b=0;1;4;9
*a-b=0. Suy ra ab =11
*a-b=1. Suy ra ab =67
*a-b=4. Suy ra ab =73
*a-b=9. Suy ra không tồn tại ab
Vậy ab =11;67;73
\(A=3^2-3^5+3^8-3^{11}+...+3^{98}-3^{101}\)
\(\Rightarrow27A=3^5-3^8+3^{11}-3^{14}+...+3^{101}-3^{104}\)
\(\Rightarrow28A=9-3^{104}\)
\(\Rightarrow B+28A=3^{104}-3^{104}+9=9\)