\(\overline{\left(a+1\right)\left(a+2\right)a\left(a+3\right)}\)  là s...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2020

Hình như đề là \(\overline{\left(a+1\right)a\left(a+2\right)\left(a+3\right)}\)thì phải bn ak.

9 tháng 2 2020

Ko mình  viết đúng đề đó bạn

1 tháng 7 2018

\(a)\) \(A=x\left(x^3-1\right)-x^2\left(x^2+1\right)-5\left(x-1\right)\)

\(A=x^4-x-x^4-x^2-5x+5\)

\(A=-x^2-6x+5\)

Vậy \(A=-x^2-6x+5\)

\(B=4x\left(x+2\right)-8\left(x+4\right)-4\)

\(B=4x^2+8x-8x-32-4\)

\(B=4x^2-36\)

Vậy \(B=4x^2-36\)

\(b)\) Ta có : 

\(A=-x^2-6x+5\)

\(-A=x^2+6x-5\)

\(-A=\left(x^2+6x+9\right)-14\)

\(-A=\left(x+3\right)^2-14\ge-14\)

\(A=-\left(x+3\right)^2+14\le14\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x+3\right)^2=0\)

\(\Leftrightarrow\)\(x+3=0\)

\(\Leftrightarrow\)\(x=-3\)

Vậy GTLN của \(A\) là \(14\) khi \(x=-3\)

Chúc bạn học tốt ~ 

15 tháng 9 2018

cái gạch j trên (a+1)x(a+2)xã(a+3) vậy bn

9 tháng 11 2017

1+1=3

1234567

23 tháng 3 2018

Ngu người 

24 tháng 3 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{\overline{ab}+\overline{bc}+\overline{bc}+\overline{ca}+\overline{ca}+\overline{ab}}{a+b+b+c+c+a}=\frac{2\left(\overline{ab}+\overline{bc}+\overline{ca}\right)}{2\left(a+b+c\right)}=\frac{\overline{ab}+\overline{bc}+\overline{ca}}{a+b+c}\)

\(=\frac{10a+b+10b+c+10c+a}{a+b+c}=\frac{11a+11b+11c}{a+b+c}=\frac{11\left(a+b+c\right)}{a+b+c}=11\)

Lại có : \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\)

+) Nếu \(a+b+c=0\) : 

\(\Rightarrow\)\(a+b=-c\)

\(\Rightarrow\)\(b+c=-a\)

\(\Rightarrow\)\(a+c=-b\)

Thay \(a+b=-c\)\(;\)\(b+c=-a\) và \(a+c=-b\) vào \(\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\) ta được : 

\(\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)

+) Nếu \(a+b+c\ne0\) : 

Do đó : 

\(\frac{\overline{ab}+\overline{bc}}{a+b}=11\)\(\Rightarrow\)\(10a+11b+c=11a+11b\)\(\Rightarrow\)\(c=a\)\(\left(1\right)\)

\(\frac{\overline{bc}+\overline{ca}}{b+c}=11\)\(\Rightarrow\)\(10b+11c+a=11b+11c\)\(\Rightarrow\)\(a=b\)\(\left(2\right)\)

\(\frac{\overline{ca}+\overline{ab}}{c+a}=11\)\(\Rightarrow\)\(10c+11a+b=11c+11a\)\(\Rightarrow\)\(b=c\)\(\left(3\right)\)

Từ (1), (2) và (3) suy ra : 

\(a=b=c\)

Suy ra : 

\(P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{b+b}{b}.\frac{c+c}{c}.\frac{a+a}{a}=\frac{2b}{b}.\frac{2c}{c}.\frac{2a}{a}=2.2.2=8\)

Vậy \(P=-1\) hoặc \(P=8\)

Chúc bạn học tốt ~ 

16 tháng 1 2019

ta để dàng thấy được : \(a;b\) là 2 số lẽ khác \(5\)

\(\overline{\left(a+1\right)b}\) là số có 2 chữ số \(\Rightarrow\) \(a;b\) khác 9

\(\Rightarrow a;b\in\left\{1,3,7\right\}\)

\(\Rightarrow\left(a;b\right)=\left(1;1\right);\left(1;3\right)\left(1;7\right);\left(3;1\right);\left(3;3\right);\left(3;7\right);\left(7;1\right);\left(7;3\right)\left(7;7\right)\)

thay lại lần lược ta thấy \(\left(1;1\right);\left(1;3\right)\left(3;1\right);\left(3,7\right);\left(7;3\right)\) thõa mãn bài toán

vậy ...

15 tháng 1 2019

dễ thấy a;b=0 => loại
với a;b đồng thời bằng 1 => loại
=> a>=1 với
a=1 => (a+1)b= 2b là số nguyên tố => b=1
khi đó ab=1 => loại
=> a>1
*với a=2 =>ab=2b là số nguyên tố => b=1
=> (b+1)a=2a là số nguyên tố => a=1 (vô lý)
*với a>2 => a lẻ => a+1 chẵn => (a+1).b chia hết cho 2 và >2 => loại
vậy ko có số tự nhiên a;b thỏa mãn

24 tháng 1 2019

Ta có : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

\(=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

Đặt : \(n^2+3n=k\)\(\Rightarrow A=k\left(k+2\right)=k^2+2k\)

Ta có : \(\left(k+1\right)^2=\left(k+1\right)\left(k+1\right)\)

\(=k\left(k+1\right)+1\left(k+1\right)\)

\(=k^2+k+k+1=k^2+2k+1\)

Do : \(n\inℕ^∗\Rightarrow n^2+3n>0\)hay : \(k>0\)

\(\Rightarrow k^2+2k>k^2\)

Ta có : \(k^2< k^2+2k< k^2+2k+1\)

hay : \(k^2< k^2+2k< \left(k+1\right)^2\)

Do : \(k^2\)và \(\left(k+1\right)^2\)là hai số chính phương liên tiếp

\(\Rightarrow k^2+2k\)không phải là số chính phương

24 tháng 1 2019

\(Giai\)

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

\(\text{Đặt:n2+3n=t}\)

\(A=t\left(t+2\right)=\left(t+1\right)^2-1\)

Đến đây cậu đã làm được chưa ạ?

NV
29 tháng 9 2019

\(\frac{100a+10b+c}{a+10b+c}=\frac{100b+10c+a}{b+10c+a}\Leftrightarrow\frac{99a}{a+10b+c}=\frac{99b}{b+10c+a}\Leftrightarrow\frac{a}{a+10b+c}=\frac{b}{b+10c+a}\)

- Nếu \(a=0\Rightarrow b=0\) ngược lại thì hiển nhiên ta có \(\frac{a}{10b+c}=\frac{b}{10c+a}\)

- Nếu a; b đều khác 0

\(\Rightarrow\frac{a+10b+c}{a}=\frac{b+10c+a}{b}\Rightarrow\frac{10b+c}{a}=\frac{10c+a}{b}\Rightarrow\frac{a}{10b+c}=\frac{b}{10c+a}\) (đpcm)

Bài 2 tương tự

\(\frac{10a+11b+c}{a+b}=\frac{10b+11c+a}{b+c}=\frac{10c+11a+b}{c+a}\) (tách \(\frac{10a+11b+c}{a+b}=10+\frac{b+c}{a+b}\) và tương tự, bài 1 cũng vậy nếu em chưa hiểu tại sao lại rút gọn được như dấu tương đương đầu tiên)

\(\Rightarrow\frac{b+c}{a+b}=\frac{c+a}{b+c}=\frac{a+b}{c+a}=\frac{2a+2b+2c}{2a+2b+2c}=1\)

\(\Rightarrow\left\{{}\begin{matrix}b+c=a+b\\c+a=b+c\\a+b=c+a\end{matrix}\right.\) \(\Rightarrow a=b=c\)

Bài 3: Đề bài thiếu, cần thêm 1 điều kiện gì đó

Em lấy thử \(\left(a;b;c;d\right)=\left(4;1;0;3\right)\) thì rõ ràng thỏa mãn giả thiết (\(0=0\)) nhưng 4 số này sao lập tỉ lệ thức được?

27 tháng 9 2019

Vũ Minh TuấnBăng Băng 2k6tthNguyễn Hoàng NhiNguyễn Thị Diễm Quỳnh@Nk>↑@nguyen thi vangHoàng Tử HàHuyền

29 tháng 6 2018

\(A=x^2+4x^4\)

\(\Rightarrow A=\left(2x^2\right)^2+4x^3+\left(x\right)^2-4x^3\)

\(\Rightarrow\left(2x^2+x\right)^2-4x^3\)

=> Ko là số chính phương

\(B=y^2-12y+36\)

\(B=y^2-2.6y+6^2\)

\(\Rightarrow B=\left(y-6\right)^2\)

=> Là số chính phương