Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 3x^3+2x^2-7x+a chia hêt cho 3x-1
=>3x^3-x^2+3x^2-x-6x+2+a-2 chia hết cho 3x-1
=>a-2=0
=>a=2
c: =>2x^2-6x+(a+6)x-3a-18+3a+19 chia x-3 dư 4
=>3a+19=4
=>3a=-15
=>a=-5
d: 2x^3-x^2+ax+b chiahêt cho x^2-1
=>2x^3-2x-x^2+1+(a+2)x+b-1 chia hết cho x^2-1
=>a+2=0 và b-1=0
=>a=-2 và b=1
Cau a va b dat cot tim so du .Vi la phep chia het nen du bang 0.Cau c thi da thuc se chia het cho tich (x+3)(x-3) lam tuong tu hai cau a va b
a: =>3x^3-x^2+3x^2-x-6x+2+m-2 chia hết cho 3x-1
=>m-2=0
=>m=2
b: =>\(x^4+3x^3-x^2+3x^3+9x^2-3x-x^2+3x-1-6x+a+1⋮x^2+3x-1\)
=>-6x+a+1=0
=>6x=a+1
=>x=(a+1)/6
Bài 1.
x^3 + 3x^2 + 3 x^3 + 1 1 1 x^3 - 3x^2 + 2
3x2 + 2 có bậc thấp hơn x3 + 1 nên không thể chia tiếp
Vậy x3 + 3x2 + 3 = 1( x3 + 1 ) + 3x2 + 2
Bài 2.
Ta có : x3 + 3x2 + 3x + a có bậc là 3
x + 2 có bậc là 1
=> Thương bậc 2
lại có hệ số cao nhất của đa thức bị chia là 1
Đặt đa thức thương là x2 + bx + c
khi đó : x3 + 3x2 + 3x + a chia hết cho x + 2
<=> x3 + 3x2 + 3x + a = ( x + 2 )( x2 + bx + c )
<=> x3 + 3x2 + 3x + a = x3 + bx2 + cx + 2x2 + 2bx + 2c
<=> x3 + 3x2 + 3x + a = x3 + ( b + 2 )x2 + ( c + 2b )x + 2c
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}b+2=3\\c+2b=3\\2c=a\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\c=1\\a=2\end{cases}}\Rightarrow a=2\)
Vậy a = 2
x^2+5 x^4+2x^3+10x+a x^2+2x-5 x^4+5x^2 2x^3-5x^2+10x+a 2x^3 +10x -5x^2+a -5x^2-25 a+25
Để x4+2x3+10x+a chia hết cho đa thức x2+5 thì
\(a+25=0\Leftrightarrow a=-25\)
3x^3 + 2x^2 - 7x + a 3x - 1 x^2 + x - 2 3x^3 - x^2 3x^2 - 7x 3x^2 - x -6x + a -6x + 2 a - 2
Để : \(3x^3+2x^2-7x+a⋮3x-1\)<=> \(a-2=0\)
<=> \(a=2\)
Vậy a = 2
3x^3 + 3x^2 + 5x + a x + 3 3x^2 - 6x + 22 3x^3 + 9x^2 -6x^2 + 5x -6x^2 - 18x 22x + a 22x + 66
Để \(x^3+3x^2+5x+a⋮x+3\)<=> \(a-66=0\)
<=> \(a=66\)
Vậy a = 66