Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lim\limits_{x\rightarrow6}f\left(x\right)=\lim\limits_{x\rightarrow6}\dfrac{3x^2-23x+30}{x-6}\)
\(=\lim\limits_{x\rightarrow6}\dfrac{3x^2-18x-5x+30}{x-6}\)
\(=\lim\limits_{x\rightarrow6}\dfrac{\left(x-6\right)\left(3x-5\right)}{x-6}\)
\(=\lim\limits_{x\rightarrow6}3x-5=3\cdot6-5=13\)
f(6)=a
Hàm số liên tục tại x=6 khi a=13
Hàm số không liên tục tại x=6 khi \(a\ne13\)
\(\lim\limits_{x\rightarrow0}\left|f\left(x\right)\right|=\lim\limits_{x\rightarrow0}\left|x^2sin\dfrac{1}{x}\right|< \lim\limits_{x\rightarrow0}\left|x^2\right|=0\).
Vậy \(\lim\limits_{x\rightarrow0}f\left(x\right)=0\).
\(f\left(0\right)=A\).
Để hàm số liên tục tại \(x=0\) thì \(\lim\limits_{x\rightarrow0}f\left(x\right)=f\left(0\right)\Leftrightarrow A=0\).
Để xét hàm số có đạo hàm tại \(x=0\) ta xét giới hạn:
\(\lim\limits_{x\rightarrow0}\dfrac{f\left(x\right)-f\left(0\right)}{x-0}=\lim\limits_{x\rightarrow0}\dfrac{x^2sin\dfrac{1}{x}}{x}=\lim\limits_{x\rightarrow0}xsin\dfrac{1}{x}=0\).
Vậy hàm số có đạo hàm tại \(x=0\).
a) Ta có = 22 +2.2 +4 = 12.
Vì nên hàm số y = g(x) gián đoạn tại x0 = 2.
b) Để hàm số y = f(x) liên tục tại x0 = 2 thì ta cần thay số 5 bởi số 12
a/ Với \(x\ne\pm1\) hàm số liên tục
Với \(x=-1\) hàm số gián đoạn
Xét tại \(x=1\)
\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\frac{x^2+2x-1}{x^2-1}=\frac{2}{0}=+\infty\ne f\left(1\right)\)
Vậy hàm số gián đoạn tại \(x=1\)
b/ Với \(x\ne2\) hàm số liên tục (ko cần xét tại \(x=1\) do tại \(x=1\Rightarrow f\left(x\right)=2x^2-6\) là hàm đa thức nên hiển nhiên liên tục)
Xét tại \(x=2\)
\(\lim\limits_{x\rightarrow2^+}f\left(x\right)=\lim\limits_{x\rightarrow2^+}\frac{\left(2-x\right)\left(x^2-3x+1\right)}{\left(x-1\right)\left(x-2\right)}=\lim\limits_{x\rightarrow2^+}\frac{x^2-3x+1}{1-x}=1\ne f\left(2\right)\)
Vậy hàm số gián đoạn tại \(x=2\) (ko cần xét thêm giới hạn trái tại 2)
\(\lim\limits_{x\rightarrow6}f\left(x\right)=\lim\limits_{x\rightarrow6}\dfrac{3x^2-23x+30}{x-6}\)
\(=\lim\limits_{x\rightarrow6}\dfrac{3x^2-18x-5x+30}{x-6}\)
\(=\lim\limits_{x\rightarrow6}\dfrac{\left(x-6\right)\left(3x-5\right)}{x-6}=\lim\limits_{x\rightarrow6}3x-5=3\cdot6-5=13\)
\(f\left(6\right)=a\)
Để hàm số liên tục tại x=6 thì \(f\left(6\right)=\lim\limits_{x\rightarrow6}f\left(x\right)\)
=>a=13