Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(6x^3-2x^2-ax-2⋮2x-3\)
\(\Leftrightarrow6x^3-9x^2+7x^2-10.5x+\left(a+10.5\right)\cdot x-\left(1.5a+15.75\right)+1.5a-13.75⋮2x-3\)
=>1,5a-13,75=0
=>1,5a=13,75
=>a=55/6
a: \(\Leftrightarrow x^3+2x^2-3x^2-6x+5x+10+a-10⋮x+2\)
=>a-10=0
=>a=10
b: \(\Leftrightarrow x^3+x^2+x+\left(a-1\right)x^2+\left(a-1\right)x+a-1+\left(2-a\right)x+b-a+1⋮x^2+x+1\)
=>2-a=0 và b-a+1=0
=>a=2; b=a-1=2-1=1
Đa thức \(x^2-1\)có nghiệm \(\Leftrightarrow x^2-1=0\)
\(\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\)
-1 và 1 là hai nghiệm của đa thức \(x^2-1\)
Để đa thức \(2x^3-x^2+ax+b\)chia hết cho đa thức \(x^2-1\)thì -1 và 1 cũng là hai nghiệm của đa thức \(2x^3-x^2+ax+b\)
Nếu x = -1 thì \(-2-1-a+b=0\Leftrightarrow a-b=-3\)(1)
Nếu x = 1 thì \(2-1+a+b=0\Leftrightarrow a+b=-1\)(2)
Từ (1) và (2) suy ra \(\hept{\begin{cases}a=\frac{-3-1}{2}=-2\\b=\frac{-1+3}{2}=1\end{cases}}\)
Vậy a = -2, b = 1
Lời giải:
Áp dụng định lý Bê-du về phép chia đa thức
a)
Số dư của phép chia đa thức \(f(x)=2x^3-3x^2+x+a\) cho $x+2$ là:
\(f(-2)=2(-2)^3-3(-2)^2+(-2)+a=-30+a\)
Để phép chia là chia hết thì số dư bằng $0$
Hay $-30+a=0$ suy ra $a=30$
b) Số dư của phép chia đa thức $f(x)=2x^2+ax+1$ cho $x-3$ là:
\(f(3)=2.3^2+3a+1=19+3a\)
Số dư bằng $4$ \(\Leftrightarrow 19+3a=4\Rightarrow a=-5\)
x^2+5 x^4+2x^3+10x+a x^2+2x-5 x^4+5x^2 2x^3-5x^2+10x+a 2x^3 +10x -5x^2+a -5x^2-25 a+25
Để x4+2x3+10x+a chia hết cho đa thức x2+5 thì
\(a+25=0\Leftrightarrow a=-25\)