Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(A=x^3+x^2y-xy-y^2+3y+x-1\)
Ta có:\(x+y-2=0\Rightarrow x+y=2\)
\(A=x^2\left(x+y\right)-y\left(x+y\right)+3y+x-1\)
\(=2x^2-2y+3y+x-1\)
\(=2x^2+y+x-1\)
\(=2x^2+2-1\)
\(=2x^2+1\)
b) x - y = 0 => x = y
B = x( x^2 + y^2 ) - y ( x^2 + y^2 ) + 3
= x(x^2 + x^2 ) - x (x^2 + x^2 ) + 3
= 3
\(1.\)
\(a.\)
\(\dfrac{x}{-150}=-\dfrac{6}{x}\)
\(\Rightarrow x^2=\left(-6\right)\left(-150\right)\)
\(\Rightarrow x^2=900\)
\(\Rightarrow x=\pm30\)
\(2.\)
\(a.\) \(2x=3y;5y=7z\) và \(3x-7y+5z=30\)
Ta có : \(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}\) \(\left(1\right)\)
\(5y=7z\Rightarrow\dfrac{y}{7}=\dfrac{z}{5}\Rightarrow\dfrac{y}{14}=\dfrac{z}{10}\) \(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\)
\(\Rightarrow\dfrac{x}{21}=2\Rightarrow x=42\)
\(\dfrac{y}{14}=2\Rightarrow y=28\)
\(\dfrac{z}{10}=2\Rightarrow z=20\)
Vậy : ..................
b) 5x2 +5y2 +8xy + 2x-2y+2 = 0
(x2 +2x+1) + (y2 -2y+1) + (4x2 +8xy + 4y2) = 0
(x+1)2 + (y-1)2 +(2x+2y)2 = 0
=> (x+1)2 = 0 => x = -1
(y-1)2 = 0 => y = 1
(2x+2y)2 = 0
KL: x = -1; y = 1
a) 3x2 +5y2 = 345
=> x2 chia hết cho 5
=> x chia hết cho 5
đặt x = 5t=> 75t2+5y2 =345⇒15t2+y2 =69⇒y chia hết cho 3
đặt y = 3z => 15t2+9z2 =69
⇒5t2 +3z2 =23
...
a) D(x) = 2x2 + 3x - 35
D(-5) = 2 . ( -5 )2 + 3 . ( -5 ) -35 = 2 . 25 - 15 - 35 = 50 - 15 - 35 = 0
=> x = -5 là nghiệm của D(x)
b) F(x) = -5x - 6
F(x) = 0 <=> -5x - 6 = 0
<=> -5x = 6
<=> x = -6/5
c) E - ( 2x2 - 5xy2 + 3y3 ) = 5x2 + 6xy2 - 8y3
E = 5x2 + 6xy2 - 8y3 + 2x2 - 5xy2 + 3y3
E = 7x2 + xy2 -5y3
a, \(D\left(x\right)=2x^2+3x-35\)
\(D\left(-5\right)=2\left(-5\right)^2+3.\left(-5\right)-35=2.25-15-35=0\)
Vậy x = -5 là nghiệm của đa thức
b, Sửa đề \(F\left(x\right)=-5x-6=0\)
\(x=-\frac{6}{5}\)
c, \(E-\left(2x^2-5xy^2+3y^3\right)=5x^2+6xy^2-8y^3\)
\(E-2x^2+5xy^2-3y^3=5x^2+6xy^2-8y^3\)
\(E=5x^2+6xy^2-8y^3+2x^2-5xy^2+3y^3\)
\(E=7x^2+xy^2-5y^3\)
A+(9x^3+7xy-5y)=12x^3-3y
A=12x^3-3y-(9x^3+7xy-5y)
A=12x^3-3y-9x^3-7xy+5y
A=(12x^3-9x^3)+7xy-(3y-5y)
A=3x^3+7xy+2y
!!! Hok tốt!!!
\(A+\left(5y^3-x+8y\right)=3y^3-y\)
<=> \(A=3y^3-y-\left(5y^3-x+8y\right)=\left(3y^3-5y^3\right)+\left(-y-8y\right)+x\)
\(=-2y^3-9y+x\)