Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) \(4.2^5:\left(2^3.\dfrac{1}{16}\right)\)
\(=4.2^5:\dfrac{2^3}{16}\)
\(=2^2.2^5:\dfrac{2^3}{2^4}\)
\(=2^7:\dfrac{1}{2}\)
\(=2^6=64\)
Vậy ...
b) \(\dfrac{8^5.10^4.25^3}{16^4.625^3}\)
\(=\dfrac{2^{15}.2^4.5^4.5^6}{2^8.5^{12}}\)
\(=\dfrac{2^{19}.5^{10}}{2^8.5^{12}}\)
\(=\dfrac{2^{11}}{5^2}\)
Vậy ...
c) \(C=2^{200}-2^{199}+2^{198}-2^{197}+...+2^2-2\)
\(\Leftrightarrow C=\left(2^{200}-2^{199}\right)+\left(2^{198}-2^{197}\right)+...+\left(2^2-2\right)\)
\(\Leftrightarrow C=2^{199}\left(2-1\right)+2^{197}\left(2-1\right)+...+2\left(2-1\right)\)
\(\Leftrightarrow C=2^{199}+2^{197}+...+2\)
\(\Leftrightarrow4C=2^{201}+2^{199}+...+2^3\)
\(\Leftrightarrow3C=4C-C=2^{201}-2\)
\(\Leftrightarrow C=\dfrac{2^{201}-2}{3}\)
Vậy ...
\(A< \frac{1}{99.100}+\frac{1}{100.101}+...+\frac{1}{198.199}=\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...+\frac{1}{198}-\frac{1}{199}\)
=> \(A< \frac{1}{99}-\frac{1}{199}< \frac{1}{99}\)
Lại có:
\(A>\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{199.200}=\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{199}-\frac{1}{200}\)
=> \(A>\frac{1}{100}-\frac{1}{200}=\frac{1}{200}\)
=> 1/100 < A < 1/99
1, A = 291 = 27.13 = (213)7 = 81927
B = 535 = 55.7 = (55)7 = 31257
Vì 3125 < 8192
=> 31257 < 81927
=> B < A
2.Ta có:
A=11+112+113+114+...+11199+11200.
11A=112+113+114+...+11199+11200+11201.
11A-A=11201-11.
10A=11201-11.
A=(11201-11):10
Quan sát 2 vế A và B thì ta thấy rõ ràng vế A<B hay B>A.
A= 39402
B= 1600000100
C= 109230
A=199
B=1599999900
C=330