Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x,y,z \(\in\)Z ,nên
\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
\(\Rightarrow A>1\)
\(B=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{y}{x+y+z}+\frac{z}{x+y+z}+\frac{x}{x+y+z}=1\)
\(\Rightarrow B>1\)
Ta có: \(A+B=\left(\frac{x}{x+y}+\frac{y}{x+y}\right)+\left(\frac{y}{y+z}+\frac{z}{y+z}\right)+\left(\frac{z}{z+x}+\frac{x}{z+x}\right)=3\) và B > 1
Do đó A < 2.Vậy 1 < A < 2
=> A có giá trị là 1 số không thuộc tập hợp số nguyên
a)\(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=\frac{a\left(a+1\right)}{a+1}+\frac{3}{a+1}=a+\frac{3}{a+1}\in Z\)
\(\Rightarrow3⋮a+1\)
\(\Rightarrow a+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow a\in\left\{0;-2;2;-4\right\}\)
b) Phần 1
\(x-2xy+y=0\)
\(\Rightarrow2x-4xy+2y=0\)
\(\Rightarrow2x-4xy+2y-1=-1\)
\(\Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)
\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)
Lập bảng xét Ư(-1)={1;-1}
Phần 2:
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(\Leftrightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)
\(\Leftrightarrow\frac{x+y+z+t}{y+z+t}=\frac{y+z+t+x}{z+t+x}=\frac{z+t+x+y}{t+x+y}=\frac{t+x+y+z}{x+y+z}\)
+)XÉt \(x+y+z+t\ne0\) suy ra \(x=y=z=t\), Khi đó \(P=1+1+1+1=4\)
+)Xét \(x+y+z+t=0\) suy ra x+y=-(z+t); y+z=-(t+x); (z+t)=-(x+y); (t+x)=-(y+z)
Khi đó \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
Vậy P có giá trị nguyên
Vì x,y,z là các số nguyên dương nên ta có:
\(\frac{x}{x+y}>\frac{x}{x+y+z};\frac{y}{y+z}>\frac{y}{y+z+x};\frac{z}{z+x}>\frac{z}{z+x+y}\)
\(\Rightarrow A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{y+z+x}+\frac{z}{z+x+y}\)
mà \(\frac{x}{x+y+z}+\frac{y}{y+z+x}+\frac{z}{z+x+y}=\frac{x+y+z}{x+y+z}=1\)
=> A>1
tham khảo https://olm.vn/hoi-dap/detail/2037215608.html
#Học-tốt
Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
=> \(\frac{xy+yz+xz}{xyz}=1\)
=> xy + yz + xz - xyz = 0 (1)
=> y(x + z) + xy(1 - z) = 0
=> y[x + z + (1 - z).x] = 0
=> \(\orbr{\begin{cases}y=0\left(\text{loại}\right)\\x+z+x\left(1-z\right)=0\end{cases}\Rightarrow x\left(2-z\right)+z=0\Rightarrow\left(x-1\right)\left(2-z\right)=-2}\)
Lại có \(x;z\inℕ^∗\Rightarrow\hept{\begin{cases}x-1\inℕ^∗\Leftrightarrow x>1\\2-z\inℕ^∗\Leftrightarrow z< 2\end{cases}}\)(2)
Từ (1) ta có : -2 = (-2).1 = (-1).2
Lập bảng xét các trường hợp
x - 1 | -1 | 2 | 1 | -2 |
2 - z | 2 | -1 | -2 | 1 |
x | 0(loại) | 3 | 2 | -3(loại) |
z | 0(loại) | 3 | 4 | 3 |
y | \(y\in\varnothing\) | 3 | 2 | 1(loại) |
Vậy các cặp (x;y;z) thỏa mãn là : (3;3;3) ; (2;4;2) ; (2;2;4) ; (4;2;2)
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\)
\(\Leftrightarrow\frac{y}{xy}+\frac{x}{xy}=\frac{1}{3}\)
\(\Leftrightarrow\frac{y+x}{xy}=\frac{1}{3}\)
\(\Leftrightarrow3\left(x+y\right)=xy\)
\(\Leftrightarrow3x+3y-xy=0\)
\(\Leftrightarrow x\left(3-y\right)+3y=0\)
\(\Leftrightarrow x\left(3-y\right)+3y-9=9\)
\(\Leftrightarrow x\left(3-y\right)-3\left(3-y\right)=9\)
\(\Leftrightarrow\left(x-3\right)\left(3-y\right)=9\)
=>x-3 và 3-y thuộc Ư(9)={1;3;9} (với x,y thuộc Z+)
Xét x-3=1 =>x=4 <=>3-y=9 => y=-6
Xét x-3=3 =>x=6 <=>3-y=3 =>y=0
Xét x-3=9 =>x=12 <=>3-y=1 =>y=2
Vậy....