\(2^{4^{2003}}\)

 

 

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2018

Đầu tiên ta xét chữ số tận cùng của \(4^{2003}\). Nhận thấy \(4^{2003}\) có thể đưa về dạng \(4^{4n+3}\)  .Mặt khác theo tính chất: Các số có tận cùng là 1,4,5,6,9 khi nâng lên lũy thừa bậc 4n + 3 thì không thay đổi chữ số tận cùng

Ta có: \(4^{2003}=4^{2000+3}=4^{4.500+3}=...4\)

\(\Rightarrow2^{4^{2003}}=2^{...4}=...6\) (theo tính chất các số có tận cùng là 2,4,8 khi nâng lên lũy thừa bậc 4n thì có tận cùng là 6)

Vậy \(2^{4^{2003}}\) có tận cùng là 6

29 tháng 9 2018

Bài mình làm đúng nhé! Bọn không biết thì dựa cột mà nghe,ok? tớ rất ghét những cái bọn gato suốt ngày chọn sai cho tớ!Mỗi lần mở máy thấy 100 cái chọn sai là thấy nản rồi!

28 tháng 9 2018

tận cùng là 6

30 tháng 9 2018

\(3^{2^{2003}}=3^{\overline{...6}}=\overline{...9}\)

Vậy \(3^{2^{2003}}\)có tận cùng là 9

Đây không phải là bài lớp 9

22 tháng 7 2015

\(3^{2^{2003}}=9^{2003}\)

Dùq mod nha ^^

9^10 = 401 (mod 100)

9^ 30 = 401 ^ 3 = 201 (mod 100)

9^120 = 201 ^ 4 = 801 ( mod 100)

9^ 360 = 801^ 3 = 401 (mod 100)

9^1080 = 401^3 = 201 (mod 100)

9^ 1800 = 9^1080. 9^ 360. 9^ 360 = 201 . 401. 401= 001 (mod 100)

9^1920 = 9^ 1800. 9^120 = 001. 801 = 801 (mod 100)

9^1980 = 9^1920. 9^ 30 . 9^ 30 = 801. 201 . 201 = 201 (mod 100)

9^2000 = 9^1980. 9^10. 9^10 = 401. 401. 201 = 001 (mod 100)

9^2003 = 9^2000. 9^ 3 = 001 . 729 = 729 (mod 100)

= là 3 dấu gạch ngang nha bạn ^^3 chữ số tận cùng là 729

22 tháng 7 2015

9..................**** 

14 tháng 1 2017

Số nào mũ 5 lên cũng có tận cùng là chính nó hết.

Ví dụ \(1^5=1,2^5=32,3^5=243\).

Trừ những số chia hết cho 10 thì mũ 5 lên có tận cùng là 0.

Đáp số: 5

14 tháng 1 2017

À nhầm đáp số là 0

1 tháng 7 2017

(mk dùng kí hiệu  \(\overline{...6}\)  để chỉ số có tận cùng là 6 nha)

Ta có  \(2^{1992}=\left(2^4\right)^{498}=\left(\overline{...6}\right)^{498}=\overline{..6}\)

=>  \(3^{2^{1992}}=3^6=9\)  (mod 10).       (Dòng này mk dùng dấu "=" thay cho dấu đồng dư nha vì ko có dấu đồng dư)

Lại có  \(9^{1992}=\left(9^4\right)^{498}=\left(\overline{...1}\right)^{498}=\overline{...1}\)

=>  \(2^{9^{1992}}=2^1=2\)  (mod 10)   (dòng này cũng là dấu đồng dư)

Do đó chữ số tận cùng của  \(3^{2^{1992}}-2^{9^{1992}}\)  là  9 - 2 = 7