K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt x/2=y/5=k

=>x=2k; y=5k

xy-15x+6y=40

\(\Leftrightarrow10k^2-15\cdot2k+6\cdot5k=40\)

\(\Leftrightarrow10k^2=40\)

\(\Leftrightarrow k^2=4\)

Trường hợp 1: k=2

=>x=4;y=10

TRường hợp 2: k=-2

=>x=-4; y=-10

30 tháng 5 2022

Đặt `x/2 = y/5 = k`

`=>` `{(x = 2k),(y = 5k):}`

Ta có `: xy - 15x + 6y = 40`

`=> 2k . 5k - 15 . ( 2k ) + 6 . ( 5k ) = 40`

`=> 10k^2 - 30k + 30k = 40`

`=> k^2 = 40 : 10`

`=> k^2 = 4`

`=>` \(\left[ \begin{array}{l}k^2 = 2^2\\k^2 = ( - 2 )^2\end{array} \right.\) 

`=>` \(\left[ \begin{array}{l}k = 2\\k = - 2\end{array} \right.\) 

Xét `k = 2 => {(x = 2 . 2 = 4),(y = 5 . 2 = 10):}`

Xét `k = - 2 => {(x = - 2 . 2 = - 4),(y = - 2 . 5= - 10):}`

Vậy `, ( x ; y ) in { ( 4 ; 10 ) ; ( - 4 ; - 10 ) } .`

 
30 tháng 8 2015

a. đặt x/4=y/7=k => x=4k; y=7k

 xy=112

=> 4k.7k=112

=> 28k2=112

=> k2=112:28

=> k2=4=22=(-2)2

=> k=2 hoặc k=-2

TH1: k=2

=> x=4k=4.2=8

=> y=7k=7.2=14

TH2: k=-2

=> x=4k=4.(-2)=-8

=> y=7k=7.(-2)=-14

b. x/y=2/5 => x/2=y/5=k => x=2k; y=5k

xy=40

=> 2k.5k=40

=> 10k2=40

=> k2=40:10

=> k2=4

=> k=2 hoặc k=-2

Th1: k=2

=> x=2k=2.2=4

=> y=5k=5.2=10

TH2: k=-2

=> x=2k=2.(-2)=-4

=> y=5k=5.(-2)=-10

30 tháng 8 2015

a) Đặt \(\frac{x}{4}=\frac{y}{7}=k\Rightarrow x=4k;y=7k\)

Ta có xy = 112

\(\Rightarrow\) 4k.7k = 112

\(\Rightarrow\) 28k2 = 112

\(\Rightarrow\) k2 = 4

\(\Rightarrow\) k = + 2

\(\Rightarrow\) x = 4.(+ 2) = + 8; y = 7.(+ 2) = + 14

b) \(\frac{x}{y}=\frac{2}{5}\Rightarrow\frac{x}{2}=\frac{y}{5}\)

Làm tương tự như câu a

7 tháng 8 2023

Giúp mình với =(((

14 tháng 3 2022

\(A=3x^2y^3-5x^2+3x^3y^2\)

bậc 5, hệ số 3 

bạn xem lại đề B nhé 

14 tháng 3 2022

mình sửa câu B r bạn làm hộ mình

22 tháng 2 2019

Nếu một trong các số x,y,z bằng không thì dễ thấy các số còn lại cũng bằng 0

Suy ra x;y;z khác 0

Đặt \(2=a;4=b;6=c\) khi đó ta có:

\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}\)

\(\Rightarrow\frac{xyz}{ayz+bxz}=\frac{xyz}{bxz+xcy}=\frac{xyz}{cyx+ayz}\)

Mà \(x;y;z\ne0\) suy ra:

\(ayz+bxz=bxz+xcy=cxy+ayz\)

\(\Rightarrow az=cx;bx=ay\)

\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)

\(\Rightarrow x=ak;y=bk;z=ck\)

Khi đó:\(\frac{xy}{ay+bx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(\Rightarrow\frac{ak\cdot bk}{abk+abk}=\frac{a^2k^2+b^2k^2+c^2k^2}{a^2+b^2+c^2}\)

\(\Rightarrow\frac{k}{2}=k^2\)

\(\Rightarrow k=\frac{1}{2}\)

\(\Rightarrow x=\frac{a}{2};y=\frac{b}{2};z=\frac{c}{2}\)

Thay số vào,ta được:

\(x=1;y=2;z=3\)

15 tháng 3 2019

\(\frac{xy}{2y+4x}=\frac{yz}{4z+6y}=\frac{xz}{6x+2z}\)(4z chứ 4x là sai đề rồi bạn)

\(\Leftrightarrow\frac{x}{2}+\frac{y}{4}=\frac{y}{4}+\frac{z}{6}=\frac{z}{6}+\frac{x}{2}\)

\(\Leftrightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)tự làm tiếp :))

17 tháng 3 2022

ảo

 

27 tháng 9 2019

sorry sai đề :v

Sửa \(\frac{xy}{2y+4x}+\frac{yz}{4z+6y}=\frac{zx}{6x+2z}=\frac{x^2+y^2+z^2}{2^2+4^2+6^2}\)

27 tháng 9 2019

Ta có :

 \(\frac{xy}{2y+4x}=\frac{yz}{4z+6y}=\frac{zx}{6x+2z}=\frac{x^2+y^2+z^2}{2^2+4^2+6^2}\)

\(\Leftrightarrow\frac{xyz}{2yz+4xz}=\frac{xyz}{4xz+6xy}=\frac{xyz}{6xy+2yz}\)

\(\Rightarrow2yz+4xz=4xz+6xy=6xy+2yz\)

\(\Rightarrow\hept{\begin{cases}2yz=6xy\\4xz=2yz\end{cases}}\Leftrightarrow\hept{\begin{cases}z=3x\\y=2x\end{cases}}\)

\(\rightarrow x:y:z=1:2:3\frac{xy}{2y+4x}\)  \(=\frac{yz}{4z+6y}=\frac{zx}{6x+2z}=\frac{2x^2}{4y+4x}=\frac{x}{4}.\frac{x^2+y^2+z^2}{2^2+4^2+6^2}=\frac{14x^2}{56}=\frac{x^2}{4}\rightarrow\frac{x^2}{4}=\frac{x}{4}\)

\(\Rightarrow\frac{x^2-x}{4}=0\Leftrightarrow x-1=0\left(x\ne0\right)\)

\(\Rightarrow x=1\rightarrow x=1;y=2;z=3\)

Làm thử thôi sai thì thôi nha !