Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BCNN(x,y)=10101
ai tích minh minh tích mninh tích lại
mình lại tích minh tích laim
vì ƯCLN.BCNN = x.y = abcabc
ta có abcabc= abc.1001. vậy x= 1001, y=abc
mà ƯCLN﴾x,y﴿= abc suy ra BCNN﴾x,y﴿ = 1001
Ta có: ƯCLN(x,y).BCNN(x,y)=x.y
⇒BCNN(x,y)=x.y:ƯCLN(x,y)= abcabc:abc=(abc.1000+abc):abc=abc(1000+1):abc=1001
Vậy BCNN(x,y)=1001
a) Gọi số đó là a (\(a\in N;a\ge3\)) thì từ đề toán,ta suy ra a - 2 chia hết cho 3 ; 4 ; 5 ; 6 hay a - 2\(\in\)BC(3 ; 4 ; 5 ; 6)
BCNN(3 ; 4 ; 5 ; 6) = 22.3.5 = 60 nên BC(3 ; 4 ; 5 ; 6) = {0 ; 60 ; 120 ; 180 ; ...}\(\Rightarrow a\in\){2 ; 62 ; 122 ; 182 ; ..}
Ta thấy 122 là số nhỏ nhất chia 7 dư 3 trong tập hợp trên nên số cần tìm là 122
b) Giả sử ƯCLN(a ; b) = d thì a = dm ; b = dn(\(m,n\in Z^+\)) và ƯCLN(m ; n) = 1
ƯCLN(a,b).BCNN(a,b) = ab nên BCNN(a,b) = ab : ƯCLN(a,b) = d2mn = dmn
Ta có : 23 = ƯCLN(a,b) + BCNN(a,b) = d(1 + mn) => 1 + mn\(\in\)Ư(23) = {1 ; 23} mà\(mn\ge1\left(m,n\in Z^+\right)\)
\(\Rightarrow1+mn\ge2\)=> 1 + mn = 23 => mn = 22 ; d = 1 => a = m ; b = n mà (m ; n) = (1 ; 22) ; (2 ; 11) và 2 hoán vị
Vậy 2 số cần tìm là 1 và 22 hoặc 2 và 11
tim dien h tam giac ABC biet dien h hinh thang KQCB bang 132cm2 biet AK =2/3AB QC=3/2QA
1. Ta có: a chia có 7 dư 3 => a - 3 chia hết cho 7
=> 4 (a - 3) chia hết cho 7 => 4a - 12 chia hết cho 7
=> 4a - 12 + 7 chia hết cho 7 => 4a - 5 chia hết cho 7 (1)
a chia cho 13 dư 11 => a - 11 chia hết cho 13
=> 4 (a - 11) chia hết cho 13 => 4a - 44 chia hết cho 13
=> 4a - 44 + 39 chia hết cho 13 => 4a - 5 chia hết cho 13 (2)
a chia cho 17 dư 14 => a - 14 chia hết cho 17
=> 4 ( a - 14) chia hết cho 17 => 4a - 56 chia hết cho 17
=> 4a - 56 + 51 chia hết cho 17 => 4a - 5 chia hết cho 17 (3)
Từ (1), (2) và (3) => 4a - 5 thuộc BC(7;13;17)
Mà a nhỏ nhất => 4a - 5 nhỏ nhất
=> 4a - 5 = BCNN(7;13;17) = 7 . 13 . 17 = 1547
=> 4a = 1552 => a= 388
2. Gọi ƯCLN(a,b) = d
=> a = d . m (ƯCLN(m,n) = 1)
b = d . n
Do a < b => m<n
Vì BCNN(a,b) . ƯCLN(a,b) = a . b
\(\Rightarrow BCNN\left(a,b\right)=\frac{a\cdot b}{ƯCLN\left(a,b\right)}=\frac{d\cdot m\cdot d\cdot n}{d}=m\cdot n\cdot d\)
Vì BCNN(a,b) + ƯCLN(a,b) = 19
=> m . n . d + d = 19
=> d . (m . n + 1) = 19
=> m . n + 1 thuộc Ư(19); \(m\cdot n+1\ge2\)
Ta có bảng sau:
d m . n +1 m . n m n a b 1 19 18 1 2 18 9 1 18 2 9
Vậy (a,b) = (2;9) ; (1 ; 18)
3.
BCNN (x;y) = abcabc : ƯCLN (x;y)