Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cậu thử lấy 9^2=81 xong rồi lấy 81+1=82
vậy p=9 và q=2 nhé
như thế sẽ đúng đấy
ta sẽ có :9^2=82-1
81=81
thế nhé
chúc bạn học giỏi nha
Bài 2 :
Tham khảo nha bạn !
Giả sử a≤b≤c⇒ab+bc+ca≤3bca≤b≤c⇒ab+bc+ca≤3bc. Theo giả thiết abc<ab+bc+caabc<ab+bc+ca (1) nên abc<3bc⇒a<3abc<3bc⇒a<3 mà a là số nguyên tố nên a = 2. Thay a = 2 vào (1) được 2bc<2b+2c+bc⇒bc<2(b+c)2bc<2b+2c+bc⇒bc<2(b+c) (2)
Vì b≤c⇒bc<4c⇒b<4b≤c⇒bc<4c⇒b<4. Vì b là số nguyên tố nên b = 2 hoặc b = 3. Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý. Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5
Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý
Vì a,b,c có vai trò như nhau. Giả sử a<b<c
Khi đó ab+bc+ca =< 3bc
=> abc<3bc => a<3 => a=2 (vì a là số nguyên tố)
Với a=2, ta có:
2bc < 2b+2c-bc =< 4c
=> b<4 => b=2 hoặc b=3
Nếu b=2 thì 4c<2+4c thỏa mãn với c là số nguyên bất kì
Nếu b=3 thì 6c<6+5c => c<6 => c=3 hoặc c=5
Vậy các cặp số (a,b,c) cần tìm là: (2;2;p);(2;2;3);(2;3;5) và các hoán vị của chúng với p là số nguyên tố
P là số nguyên tố và p>3 => p+5, p+7 là sô chẵn đặt p+5=2k=> p+7=2k+2=>(p+5)(p+7)= 2k(2k+2)= 2k2(k+1)= 4k(k+1) chia hết cho 8
( vì k(k+1) chia hết cho 2 với mọi k thuộc n)
P là số nguyên tố lớn hơn 3 nên p có dạng 3n+1 hoặc 3n+2
. Xét P= 3n+1=> (p+5)(p+7)= (3n+6)(3n+8) chia hết cho 3 với mọi n thuộc N
. xét p=3n+2=> (p+5)(p+7)= (3n+7)(3n+9) chia hét cho 3 với mọi n thuộc N
(p+5)(p+7) chia hết cho 8 và 3=> (p+5)(p+7) chia hết cho 24
cho p là số nguyên tố lớn hơn 3.chứng minh (p+5)(p+7) chia hết cho 24
các bạn giải hộ mình vs
Ta có số chính phương khi chia cho 3 thì có số dư là 0 và 1
TH1: \(p^2\)chia hết cho 3 mà p lại là số nguyên tố nên \(p=3\Rightarrow q=1\left(loai\right)\)
TH2: TH1: \(p^2\)chia cho 3 dư 1.
\(\Rightarrow8q+1\)chia 3 dư 1
\(\Rightarrow8q\)chia hết cho 3. Mà 3, 8 nguyên tố cùng nhau nên \(q=3\Rightarrow p=5\)
Ta có số chính phương khi chia cho 3 thì có số dư là 0 và 1
TH1 : P2 chia hết cho 3 mà P lại là số nguyên tố nên P = 3 => q = 1 ( loại )
TH2 : TH1 : p2 chia cho 3 dư 1
=> 8q + 1 chia 3 dư 1
=> 8q chia hết cho 3 . Mà 3 và 8 nguyên tố cùng nhau nên q = 3 => p = 5
HỌC TỐT