K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
ND
4 tháng 6 2017
Cho tam giác ABC có S = 36cm2. Lấy H thuộc cạnh AB sao cho AH = 1/3x AB. Lấy I thuộc cạnh AC sao cho AI = 1/3x AC. Tính S IHC
Làm ơn giải theo cách lớp 6 giùm. Ví dụ:
Xét tam giác............
Có chiều cao hạ từ đỉnh..........
=>.............
DD
Đoàn Đức Hà
Giáo viên
30 tháng 8 2021
\(x=\frac{a}{13},y=\frac{a+1}{13},a\inℕ^∗\)
\(x< \frac{4}{5}< y\Leftrightarrow\frac{a}{13}< \frac{4}{5}< \frac{a+1}{13}\)
\(\Leftrightarrow\frac{5a}{65}< \frac{52}{65}< \frac{5a+5}{65}\)
\(\Leftrightarrow5a< 52< 5a+5\Leftrightarrow a< \frac{52}{5}< a+1\)
mà \(a\)là số nguyên nên \(a=10\).
Vậy \(x=\frac{10}{13},y=\frac{11}{13}\).
Lời giải:
Gọi tử số của 2 số hữu tỉ là $a$ và $a+2$ ($a$ lẻ) (do chúng là 2 số lẻ liên tiếp)
Khi đó: \(\frac{a}{13}< \frac{4}{3}< \frac{a+2}{13}\)
\(\Rightarrow \left\{\begin{matrix} 3a< 4.13\\ 3(a+2)> 4.13\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} 3a< 52< 54\\ 3a> 46>45\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a< 18\\ a> 15\end{matrix}\right.\)
Mà \(a\in\mathbb{Z}; a\) lẻ nên \(a=17\)
Vậy 2 số hữu tỉ $x,y$ là \(\frac{17}{13}; \frac{19}{13}\)
nếu thay thế điều kiện là x < \(\frac{4}{5}\)< y thì làm sao ạ. Giải dùm mik với