K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2017

Hai số là 7 và 5
Thử: (7+5).35 = (7-5).210 = 7.5.12

Giải:x + y; x-y; x.y TLN với 35; 210; 12 thì:
35.(x+y) = 210.(x-y)=12xy
Ta có (x+y)/1:35 = (x-y)/1:210=xy/1:12
(x+y)/1:35 = (x-y)/1:210=2x/1:30=x/1:60
Nên x/1:60 = xy/1:12 suy ra 60x = 12xy , ta có: y = 5
Vậy x = 7
35.(x+y) = 210.(x-y) rút gọn: x + y = 6x-6y nên 7y = 5x
Thay x = 7 ta được y = 5

23 tháng 1 2017

y=5 đâu ra vậy bạn

8 tháng 12 2019

Theo bài ra ta có:

\(\frac{x+y}{5}=\frac{x-y}{1}=\frac{xy}{18}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x+y}{5}=\frac{x-y}{1}=\frac{xy}{18}=\frac{x+y+x-y}{5+1}=\frac{2x}{6}=\frac{x}{3}\)

\(\Rightarrow\frac{xy}{18}=\frac{x}{3}\Leftrightarrow\frac{y}{6}=1\Leftrightarrow y=6\)

Với y=6 thì thay vào ta có:

\(\frac{x+6}{5}=\frac{x-6}{1}\Leftrightarrow x+6=5x-30\Leftrightarrow4x=36\Leftrightarrow x=9\)

Vậy \(y=6;x=9\)

22 tháng 12 2016

các phân số đó lần lượt là 3/5; 7/10;11/20

5 tháng 8 2016

gọi 2 phân số đó là \(\frac{a}{b}\) và \(\frac{c}{d}\)

theo đề ta có:

\(\frac{a}{b}-\frac{c}{d}=\frac{3}{196}\)   (1)

\(\frac{a}{c}=\frac{3}{5}=>a=\frac{3c}{5}\)  (2)

\(\frac{b}{d}=\frac{4}{7}=>b=\frac{4d}{7}\)   (3)

lấy (2) và (3) thay vào (1) ta có:

\(\frac{21c}{20d}-\frac{c}{d}=\frac{3}{196}\)

\(=>\frac{c}{d}=\frac{16}{49}\)

thay vào (1): \(\frac{a}{b}=\frac{9}{28}\)

=> 2 phân số cần tìm là \(\frac{15}{49}va\frac{9}{28}\)

5 tháng 8 2016

Gọi 2 phân số cần tìm là a/b và c/d. 
- Giả sử a/b > c/d 
Theo đề bài, ta có: 
{a : c = 3 : 5 
{b : d = 4 : 7 
<=> Tỉ số của 2 phân số là: a/b : c/d = 3/4 : 5/7 
<=> a/b . d/c = 3/4 . 7/5 
<=> ad / bc = 21/20 
<=> ad = 21/20 . bc = (21bc)/20 
Ta lại có: 
a/b - c/d = (ad - bc)/bd = 3/196 
<=> [(21bc) / 20 - bc] / bd = 3/196 
<=> [(21bc) / 20] / bd - bc / bd = 3/196 
<=> (21bc) / 20 . 1 / bd - bc / bd = 3/196 
<=> 21c / 20d - c / d = 3/196 
<=> 21c / 20d - 20c / 20d = 3/196 
<=> c / 20d = 3/196 
=> c : 3 và 20d : 196 => c : 3 và d : 196/20 => c : 3 và d : 49/5 
<=> c/d = 3 : 49/5 = 3 . 5 : 49 = 15/49 
=> c = 15 ; d = 49 
=> a : c = 3 : 5 => a : 15 = 3 : 5 => a = 9 
và b : d = 4 : 7 => b : 49 = 4 : 7 => b = 28 
=> a/b = 9/28 và c/d = 15/49 
Thử lại, a/b - c/d = 9/28 - 15/49 = 3/196 (đúng theo yêu cầu đề bài) 
- Do đó, 2 phân số cần tìm là 9/28 và 3/196

BACDH

     +   Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD

=>  DH \(\perp\)CD  

     +    Áp dụng định lý Pitago vào ▲vuông DHC có : 

                 DC2 = DH2 + CH2   (1)

    +   Xét ▲vuông ABC có :  AH là đường trung tuyến ứng vs cạnh huyền.

=>   AH = \(\frac{BC}{2}\)=CH (2)

     Từ (1) và (2) có :

                DC2 = DH2 + CH2 = DH2 + AH2   ( đpcm )

BACDH

  +   Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD

=>  DH \(\perp\)CD  

     +    Áp dụng định lý Pitago vào ▲vuông DHC có : 

                 DC2 = DH2 + CH2   (1)

    +   Xét ▲vuông ABC có :  AH là đường trung tuyến ứng vs cạnh huyền.

=>   AH = \(\frac{BC}{2}\)=CH (2)

     Từ (1) và (2) có :

                DC2 = DH2 + CH2 = DH2 + AH2   ( đpcm )