Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thì có làm sao đâu.
Gọi số đó là abcd (a khác 0;a;b;c;d là chữ số)
Viết theo thứ tự ngược lại ta có số ddcba ta có:
abcd.4=dcba
(a.1000+b.100+c.10+d).4=d.1000+c.100+b.10+a.
a.4000+b.400+c.40+d=d.1000+c.100+b.10+a.
a.3999+b.390=d.9999+c.60
Gọi abcde là số cần tìm.Thì abcde x 4=edcba.
Ta có a phải là số chẵn.
Và a=>2.Vì nếu a>2 thì 4a>10.Dẫn đến thuơng là số 6 chữ số.Vậy a=2.suy ra e=8(vì e>=4a).
Xét b.
Ta có 4a=e nên 4b<10.Hay b=>2.Mà (4d)+3=b.Nên b là số lẻ.Nên b=1.từ đó suy ra d=2 hoặc d=7.
Nếu d=2 thì 4d+3=11 thì (4c)+1=c.Điều nay ko xảy ra.
Nên d=7.suy ra 4d+3=31.Nên (4c)+3=c.Điều này xảy ra khi c lẻ và c chỉ có thể =9.Vậy số cần tìm là 21978
**4.abcde=edcba edcba chia hết cho 4 100.edc + 8b + 2b +a chia hết cho 4
2b+a chia hết cho 4 a chẵn , a khác 0 a=2, 4, 6 hoặc 8
Nếu a=2 thì 4.abcde được kết quả là một ssố có 5 chữ số ;
Nếu a>2 (=4, 6 hoặc 8) thì 4.abcde được kết quả là một số có 6 chữ số a=2
**4.2bcde=edcb2 ta thấy 4.e được một số tận cùng =2 e=3 hoặc 8
Nếu e=3 thì 4.2bcde>edcb2 loại e=8
**4.2bcd8=8dcb2 80032+4000b+400c+40d=80002+1000d+100c+10b
30+3990b+300c-960d=0 30.(1+133b+10c-32d)=0 133b+10c+1=32d
Từ 2b+a chia hết cho 4 và a=2 b lẻ b=1, 3, 5, 7 hoặc 9
Nếu b=1 thì 133b+10c+1 có thể =32d
Nếu b.1(=3, 5, 7 hoặc 9) 133b+10c+1>32d b=1
**4.21cd8=8dc12 Ta thấy 4.8=32 viết 2 nhớ 3 4.d +3 được số tận cùng =1
4.d được số tận cùng =8 d=2 hoặc 7
Nếu d=2 122b+10c+1>32d loại d=7
**133b+10c+1=32d thay só vào ta có : 133.1+10c+1=32.7 10c=90 c=9
Vậy số phải tìm là 21978
Gợi ý: Gọi số cần tìm là abcd. (a # 0), 0 < a, b, c, d < 10. abcd x 4 = dcba nên a có thể nhận giá trị 1 hoặc 2, không thể bằng 3 vì khi đó 4 lần abcd sẽ trở thành số có 5 chữ số. Xét TH1: a = 1, dễ thấy vô lí vì 1bcd x 4 = dcb1. Xét TH2: a = 2, ta có: 2bcd x 4 = dcb2. => d có thể bằng 3 hoặc 8. Xét tiếp từng TH, KL. (Bạn tự giải)
Tìm số tự nhiên có 4 chữ số, biết rằng khi viết ngược số đó lại ta được số mới gấp 4 lần số ban đầu.
Gợi ý:
Gọi số cần tìm là abcd. (a # 0), 0 < a, b, c, d < 10.
abcd x 4 = dcba nên a có thể nhận giá trị 1 hoặc 2, không thể bằng 3 vì khi đó 4 lần abcd sẽ trở thành số có 5 chữ số.
Xét TH1: a = 1, dễ thấy vô lí vì 1bcd x 4 = dcb1.
Xét TH2: a = 2, ta có: 2bcd x 4 = dcb2.
=> d có thể bằng 3 hoặc 8.
Xét tiếp từng TH, KL. (Bạn tự giải)
1abcd x 5 =abcd5
(10000+abcd).5=abcd.10+5
50000+5.abcd=10.abcd+5
5.abcd=50000-5
abcd=49995:5
abcd=9999
Mik ko bt đúng ko nhưng hok tốt !
Gọi số cần tìm là \(\overline{abcd}\)(a khác 0: a,b,c,d <10)
Ta có: \(\overline{abcd5}\)=5x \(\overline{1abcd}\)
\(\overline{abcd}\)x 10 +5 = 5 x (10000 + \(\overline{abcd}\))
\(\overline{abcd}\) x 10 + 5 = 50000 + 5 x \(\overline{abcd}\)
\(\overline{abcd}\)x 10 -5 x \(\overline{abcd}\)= 50000 - 5
\(\overline{abcd}\) x 5 = 49995
\(\overline{abcd}\)= 49995 : 5 = 9999
Vậy số cần tìm là 9999.
Gọi số cần tìm là abcd (a; b; c; d là chữ số; a và d khác 0)
Theo đề bài, ta có:
dcba = abcd x 4
=> d x 1000 + c x 100 + b x 10 + a = (a x 1000 + b x 100 + c x 10 + d) x 4
=> d x 1000 + c x 100 + b x 10 + a = a x 4000 + b x 400 + c x 40 + d x 4
=> d x 996 + c x 60 = a x 3999 + b x 390
=> d x 332 + c x 20 = a x 1333 + b x 130
Nhận thấy d x 332 + c x 20 có kết quả là số chẵn ; b x 130 là số chẵn nên a x 1333 là số chẵn => a chẵn
Mà dcba = abcd x 4 < 10 000 nên abcd < 2500 => a = 1 hoặc a = 2 a chẵn
=> a = 2
Ta có: d x 332 + c x 20 = 2 x 1333 + b x 130
d x 332 + c x 20 = b x 130 + 2666
d x 166 + c x 10 = b x 65 + 1333
Nhận thấy: d x 166 + c x 10 có kết quả là số chẵn nên b x 65 + 1333 chẵn => b x 65 lẻ => b lẻ. Vậy b x 65 có tận cùng là chữ số 5 => b x 65 + 1333 có tận cùng là chữ số 8.
Ta có: c x 10 tận cùng là chữ số 0 nên d x 166 có tận cùng là chữ số 8 => d = 3 hoặc d = 8.
Nếu d = 3 thì 3 x 166 + c x 10 = b x 65 + 1333 => 498 + c x 10 = b x 65 + 1333 => c x 10 = b x 65 + 835. Không có chữ số thỏa mãn vì c lớn nhất có thể bằng 9.
Nếu d = 8 thì 8 x 166 + c x 10 = b x 65 + 1333 => 1328 + c x 10 = b x 65 + 1333 => c x 10 = b x 65 + 5 => c = 7; b = 1.
Vậy số đó là: 2178
khong biet lam