Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(A=x^2-4x+1\)
\(A=x^2-4x+4-3\)
\(A=\left(x^2-4x+4\right)-3\)
\(A=\left(x-2\right)^2-3\)
Ta có: \(\left(x-2\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-2\right)^2-3\ge-3\) với mọi x
Vậy MIinA = -3 khi x = 2
2) \(B=-x^2+13x+2012\)
\(B=-x^2+13x-\frac{169}{4}+\frac{169}{4}+2012\)
\(B=-\left(x^2-13+\frac{169}{4}\right)+\left(\frac{169}{4}+2012\right)\)
\(B=-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\)
Ta có: \(\left(x-\frac{13}{2}\right)^2\ge0\) với mọi x
\(-\left(x-\frac{13}{2}\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\le\frac{8217}{4}\)
Vây \(Max\left(B\right)=\frac{8217}{4}\) khi \(x=\frac{13}{2}\)
Có : A+1 = 6x+8+x^2+1/x^2+1 = x^2+6x+9/x^2+1 = (x+3)^2/x^2+1 >= 0
=> A >= -1
Dấu "=" xảy ra <=> x+3=0 <=> x=-3
Vậy GTNN của A = -1 <=> x=-3
Tk mk nha
tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê tôi bê đê
A = x^2 - 4x + 12 = x^2 - 4x + 4 + 8 = ( x+ 2 )^2 + 8 >= 8 ( với mọi x)
VẬy GTNN của BT klaf 8 khi x - 2 = 0 => x = 2
b) 1 + 6x - x^2 = - ( x^2 - 6x - 1 ) = - ( x^2 - 6x + 9 - 10 )=- ( x - 3 )^2 + 10 <= -10
VẬy GTLN là -10 khi x = 3
sửa lại:
a) \(A=x^2-4x+12\)
\(=\left(x^2-4x+2^2\right)+8\)
\(=\left(x-2\right)^2+8\)
mà (x + 2)2 > 0
Vậy giá trị nhỏ nhất của A = 8 tại x = 2
b) \(A=1+6x-x^2\)
\(=-\left(x^2-6x+3^2\right)+10\)
\(=-\left(x-3\right)^2+10\)
mà -(x - 3)2 < 0
Vậy giá trị lớn nhất của A = 10 tại x = 3
+13x hay chỉ là +13 thôi?