Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(=\dfrac{3x+5-5}{2x}=\dfrac{3x}{2x}=\dfrac{3}{2}\)
b: \(=\dfrac{2x}{x+3}\cdot\dfrac{\left(x+3\right)\left(x-3\right)}{x}=2\left(x-3\right)\)
Bài 2:
=>x^3+x+2x^2+2+a-2 chia hết cho x^2+1
=>a-2=0
=>a=2
Bài 2:
\(=\dfrac{3x^4+3x^2+x^3+x-3x^2-3+5x-5}{x^2+1}\)
\(=3x^2+x-3+\dfrac{5x-5}{x^2+1}\)
Bài 3:
\(\dfrac{A}{B}=\dfrac{2x^3-x^2-x+1}{x^2-2x}\)
\(=\dfrac{2x^3-4x^2+3x^2-6x+5x+1}{x^2-2x}\)
\(=2x^2+3+\dfrac{5x+1}{x^2-2x}\)
=>\(2x^3-x^2-x+1=\left(x^2-2x\right)\left(2x^2+3\right)+5x+1\)
a) \(\left(6x^3y^2-4x^2y^3-10x^2y^2\right):2xy\)
=\(\left(6x^3y^2:2xy\right)-\left(4x^2y^3:2xy\right)-\left(10x^2y^2:2xy\right)\)
\(=3x^2y-2xy^2-5xy\)
b) \(\dfrac{2y}{x-2}+\dfrac{5y}{x-2}\)
=\(\dfrac{2y+5y}{x-2}\)
=\(\dfrac{7y}{x-2}\)
c)\(\dfrac{xy}{3x-y}+\dfrac{3x^2}{y-3x}\)
\(=\dfrac{xy}{3x-y}-\dfrac{3x^2}{3x-y}\)
=\(\dfrac{x\left(y-3x\right)}{3x-y}\)
=\(\dfrac{-x\left(3x-y\right)}{3x-y}\)
=-x
d)\(\dfrac{x-1}{6x+12}.\dfrac{x+2}{x-1}\)
=\(\dfrac{\left(x-1\right)\left(x+2\right)}{6\left(x+2\right)\left(x-1\right)}\)
=\(\dfrac{1}{6}\)
Bài 1:
a) Sửa đề \(x\left(x+y\right)-3y\left(x+y\right)\)
\(=\left(x+y\right)\left(x-3y\right)\)
b) \(x^2+2019x-xy-2019y\)
\(=x\left(x+2019\right)-y\left(x+2019\right)\)
\(=\left(x+2019\right)\left(x-y\right)\)
c) \(x^2-9y^2-4x+4\)
\(=\left(x^2-4x+4\right)-9y^2\)
\(=\left(x-2\right)^2-\left(3y\right)^2\)
\(=\left(x-2-3y\right)\left(x-2+3y\right)\)
d) \(3x^2-5x+2\)
\(=3x^2-3x-2x+2\)
\(=3x\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x-1\right)\left(3x-2\right)\)
Bài 2:
a) \(\left(6x^3y^3-27xy^2\right):\left(3x^2y\right)-2xy^2\)
\(=6x^3y^3:3x^2y-27xy^2:3x^2y-2xy^2\)
\(=2xy^2-\dfrac{9y}{x}-2xy^2\)
\(=-\dfrac{9y}{x}\)
b) \(\dfrac{2}{x-2}+\dfrac{1-2x}{x+2}+\dfrac{3x+2}{4-x^2}\)
\(=\dfrac{2}{x-2}+\dfrac{1-2x}{x+2}-\dfrac{3x+2}{x^2-4}\)
\(=\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(1-2x\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{3x+2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2\left(x+2\right)+\left(1-2x\right)\left(x-2\right)-3x-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2x+4+x-2-2x^2+4x-3x-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-2x^2+4x}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-2x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-2x}{x+2}\)
Bài 3:
a) \(3x\left(2x-3\right)-x\left(6x+4\right)=7-12x\)
\(\Rightarrow6x^2-9x-6x^2-4x=7-12x\)
\(\Rightarrow-13x=7-12x\)
\(\Rightarrow-13x+12x-7=0\)
\(\Rightarrow-x-7=0\)
\(\Rightarrow-x=7\)
\(\Rightarrow x=-7\)
b) \(3\left(x-5\right)-2x^2+10x=0\)
\(\Rightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(3-2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)
\(7xy^2.\left(\dfrac{1}{7}x^2y^3+3x^2+1\right)\)
\(=7xy^2.\dfrac{1}{7}x^2y^3+7xy^2.3x^2+7xy^2.1\)
\(=x^3y^5+21x^3y^2+7xy^2\)
Ta có:
\(7xy^2\cdot\left(\dfrac{1}{7}x^2y^3+3x^2+1\right)\)
\(=7xy^2\cdot\dfrac{1}{7}x^2y^3+7xy^2\cdot3x^2+7xy^2\cdot1\)
\(=x^3y^5+21x^3y^2+7xy^2\)
=12x5y3-2x4y3+3xy2