Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left[\frac{1}{3}\right]^{50}.\left(-9\right)^{25}-\frac{2}{3}:4\)
\(\Rightarrow\frac{1}{3^{50}}.\left(-9\right)^{25}-\frac{2}{3}.\frac{1}{4}\)
\(\Rightarrow\frac{\left(-9\right)}{9^{25}}-\frac{1}{6}\)
\(\Rightarrow1-\frac{1}{6}\)
\(\Rightarrow\frac{6}{6}-\frac{1}{6}=\frac{5}{6}\)
Vậy = 5/6
1)
a. \(\left(3x^2-50\right)^2=5^4\)
\(\Leftrightarrow3x^4-50=625\)
\(\Leftrightarrow3x^4=675\)
\(\Leftrightarrow x^4=225\)
\(\Leftrightarrow x=\sqrt{15}\)
2)
a. \(\frac{\left(3^4-3^3\right)^4}{27^3}=\frac{3^{16}-3^{12}}{\left(3^3\right)^3}=\frac{3^{12}.3^4-3^{12}}{3^9}=\frac{3^{12}\left(3^4-1\right)}{3^9}\)
\(=\frac{3^{12}.80}{3^9}=3^3.80=27.80=2160\)
b. \(\frac{25^3}{\left(5^5-5^3\right)^2}=\frac{\left(5^2\right)^3}{5^{10}-5^6}=\frac{5^6}{5^6.5^4-5^6}=\frac{5^6}{5^6\left(5^4-1\right)}\)
\(=\frac{5^6}{5^6.624}=\frac{1}{624}\)
(1/3)50. (-9)25 - 2/3 : 4
= (1/3)50 . [(-3)2]25 - 2/3 . 1/4
= (1/3)50.(-3)50- 1/6
= (1/3 . -3 )50 - 1/6
= (-1)50- 1/6
= 1 - 1/6
= 5/6
theo đề ta có
=\(\left(\frac{1}{3^{ }}\right)^{50}.\left(-9\right)^{25}-\frac{2}{3}.\frac{1}{4}\)
=\(\left(\frac{1}{3}\right)^{50}.\left(\frac{1}{3}\right)^{25}.\left(-27\right)^{25}-\frac{1}{6}\)
=\(\left(\frac{1}{3}\right)^{50+25}.\)
d: \(\dfrac{1}{27}:\left(-\dfrac{1}{3}\right)^2+75\%\cdot\left(-\dfrac{2^2}{3}\right)\)
\(=\dfrac{1}{27}:\dfrac{1}{9}+\dfrac{3}{4}\cdot\dfrac{-4}{3}\)
\(=\dfrac{1}{3}-1\)
\(=-\dfrac{2}{3}\)
\(B=1+\dfrac{1}{2}\cdot\dfrac{2\cdot3}{2}+\dfrac{1}{3}\cdot\dfrac{3\cdot4}{2}+...+\dfrac{1}{50}\cdot\dfrac{50\cdot51}{2}\)
\(=1+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{51}{2}\)
\(=\dfrac{50\cdot\dfrac{\left(51+2\right)}{2}}{2}=50\cdot\dfrac{53}{4}=662.5\)