K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)\(\frac{3y}{4x}+\frac{5y}{4x}=\frac{3y+5y}{4x}=\frac{8y}{4x}=\frac{2y}{x}\)

b)\(\frac{x^2+1}{2x-4}-\frac{7x}{2-x}=\frac{x^2+1}{2\left(x-2\right)}-\frac{-7x}{x-2}\)

\(=\frac{x^2+1}{2\left(x-2\right)}-\frac{-7x\times2}{\left(x-2\right)\times2}=\frac{x^2+1+14x}{2\left(x-2\right)}\)

19 tháng 12 2018

Thực hiện phép tính

a,  6x3y5z : 3xy3z=2x2y2

b,  \(\frac{3x+6}{x+2}+\frac{2x+4}{x+2}\)

\(=\frac{3\left(x+2\right)}{x+2}+\frac{2\left(x+2\right)}{x+2}\)

=3+2=5

18 tháng 12 2021

a: \(=\dfrac{4x-2+6x^2-6x+2x^2+1}{2x\left(2x-1\right)}=\dfrac{8x^2-2x-1}{2x\left(2x-1\right)}\)

 

8 tháng 8 2020

\(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)^3+7\)

\(=x^3-8-\left(x^3-3x^2+3x-1\right)+7\)

\(=x^3-8+7-x^3+3x^2-3x+1\)

\(=\left(x^3-x^3\right)+\left(7+1-8\right)+3x^2-3x\)

\(=3x^2-3x=3x\left(x-1\right)\)

8 tháng 8 2020

\(x\left(x+2\right)\left(2-x\right)+\left(x+3\right)\left(x^2-3x+9\right)\)

\(=x\left(2+x\right)\left(2-x\right)+\left(x+3\right)\left(x^2-3x+9\right)\)

\(=x\left(4-x^2\right)+\left(x+3\right)\left(x^2-3x+9\right)\)

\(=4x-x^3+\left(x^3+9\right)\)

\(=4x-\left(x^3-x^3\right)+9\)

\(=4x+9\)

20 tháng 12 2018

\(\frac{x+9}{x^2-9}-\frac{3}{x^2+3x}=\frac{x^2+9x}{\left(x-3\right).\left(x+3\right).x}-\frac{3x-9}{x.\left(x+3\right).\left(x-3\right)}\)

\(=\frac{x^2-6x+9}{x.\left(x+3\right).\left(x-3\right)}\)

\(4x^3-12x=4x.\left(x^2-3x\right)\)

20 tháng 12 2018

\(4x^3-12x=\left(4x\right)\left(x^2-3\right)\)

\(\frac{x+9}{x^2-9}-\frac{3}{x^2+3x}=\frac{x+9}{\left(x+3\right)\left(x-3\right)}-\frac{3}{\left(x+3\right)x}\)

\(..........dễòi\)

20 tháng 12 2021

c: \(=\dfrac{x^3+2x+2x^2+2x+x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x^2+2x+1}{x^2-x+1}\)

18 tháng 12 2016

cái này có mẫu thức chung là 3(x-1) rồi bạn quy đồng lên là được thôi

18 tháng 12 2016

Đặt hiệu của phép tính là A:

 

17 tháng 11 2023

\(\dfrac{1}{x-3}-\dfrac{1}{x}=\dfrac{x-\left(x-3\right)}{x\left(x-3\right)}=\dfrac{x-x+3}{x\left(x-3\right)}=\dfrac{3}{x\left(x-3\right)}\)

\(B=\dfrac{1}{x^2-3x}+\dfrac{1}{x^2-9x+18}+\dfrac{1}{x^2-15x+54}+\dfrac{1}{x^2-21x+108}\)

\(=\dfrac{1}{x\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-6\right)}+\dfrac{1}{\left(x-6\right)\left(x-9\right)}+\dfrac{1}{\left(x-9\right)\left(x-12\right)}\)

\(=\dfrac{1}{3}\left(\dfrac{3}{x\left(x-3\right)}+\dfrac{3}{\left(x-3\right)\left(x-6\right)}+\dfrac{3}{\left(x-6\right)\left(x-9\right)}+\dfrac{3}{\left(x-9\right)\left(x-12\right)}\right)\)

\(=\dfrac{1}{3}\left(-\dfrac{1}{x}+\dfrac{1}{x-3}-\dfrac{1}{x-3}+\dfrac{1}{x-6}-\dfrac{1}{x-6}+\dfrac{1}{x-9}-\dfrac{1}{x-9}+\dfrac{1}{x-12}\right)\)

\(=\dfrac{1}{3}\left(-\dfrac{1}{x}+\dfrac{1}{x-12}\right)\)

\(=\dfrac{1}{3}\cdot\dfrac{-\left(x-12\right)+x}{x\left(x-12\right)}\)

\(=\dfrac{4}{x\left(x-12\right)}\)