\(\frac{\left(2^3.3^3\right)^2.5^5}{\left(2^2\right)^3.\left(3^2.5^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2017

a=200

k cho mình nhé

7 tháng 9 2017

\(a=\left[\frac{\left(3^2.5^2.4^3\right)}{\left(2^3.3^2\right)}\right].2005^0\)

\(\Rightarrow a=\left[\frac{5^2.4^3}{2^3}\right].1\)

\(a=\frac{5^2.2^3}{1}\)

a = 52 . 23 = 25 . 8

a = 200

19 tháng 2 2018

\(a.\frac{2\cdot\left(-13\right)\cdot9\cdot10}{\left(-3\right)\cdot4\cdot\left(-5\right)\cdot26}\)

\(=\frac{2\cdot\left(-13\right)\cdot3\cdot3\cdot2\cdot5}{\left(-3\right)\cdot2\cdot2\cdot\left(-5\right)\cdot13\cdot2}\)

\(=-\frac{3}{2}\)

b) \(\frac{2^3\cdot3^4}{2^2\cdot3^2\cdot5}=\frac{2\cdot3^2}{5}=\frac{2\cdot9}{5}=\frac{18}{5}\)

\(\frac{2^4\cdot5^2\cdot11^2\cdot7}{2^3\cdot5^3\cdot7^2\cdot11}=\frac{2\cdot1\cdot11\cdot1}{1\cdot5\cdot7\cdot1}=\frac{22}{35}\)

c) \(\frac{121\cdot75\cdot130\cdot169}{39\cdot60\cdot11\cdot198}=\frac{11\cdot11\cdot13\cdot10\cdot169}{13\cdot3\cdot6\cdot10\cdot11\cdot11\cdot6\cdot3}\)

\(=\frac{169}{3\cdot6\cdot6\cdot3}=\frac{169}{324}\)

d) \(\frac{1998\cdot1990+3978}{1992\cdot1991-3984}\)

\(\frac{1}{2.5}\)\(+\)\(\frac{1}{5.8}\)\(+\frac{1}{8.11}\)\(+...+\frac{1}{152.155}\)

=\(\frac{1}{2}\) \(-\frac{1}{5}\) \(+\frac{1}{5}\) \(-\frac{1}{8}\) \(+...+\frac{1}{152}\) \(-\frac{1}{155}\)

=\(\frac{1}{2}\)\(-\frac{1}{155}\)

=\(\frac{153}{310}\)

7 tháng 7 2021

a) \(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)....\left(\frac{1}{1000}-1\right)=-\frac{1}{2}.\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right)...\left(-\frac{999}{1000}\right)\)

\(=-\frac{1.2.3...999}{2.3.4...1000}=-\frac{1}{1000}\)

b)\(B=\frac{\frac{3}{5}+\frac{3}{7}-\frac{3}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{11}}:\frac{3}{4}=\frac{3\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}:\frac{3}{4}=\frac{3}{4}:\frac{3}{4}=1\)

d) \(D=1+\frac{1}{2}+\frac{1}{4}+..+\frac{1}{512}+\frac{1}{1024}\)

=> \(2D=2+1+\frac{1}{2}+...+\frac{1}{256}+\frac{1}{512}\)

=> \(2D-D=\left(2+1+\frac{1}{2}+...+\frac{1}{256}+\frac{1}{512}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}+\frac{1}{1024}\right)\)

=> \(D=2-\frac{1}{1024}=\frac{2047}{1024}\)

8 tháng 9 2017

a) \(2^3+3.\left(\frac{1}{2}\right)^0+\left[\left(-2\right)^2:\frac{1}{2}\right]\)

\(=8+3.1+4:\frac{1}{2}\)

\(=8+3+8=19\)

b)\(\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^3}=\frac{2^{15}.3^8}{2^6.3^6.2^9}\)\(=\frac{2^{15}.3^8}{2^{15}.3^6}=3^2=9\)

c) \(\left(1+\frac{2}{3}-\frac{1}{4}\right).\left(\frac{4}{5}-\frac{3}{4}\right)^2\)

\(=\frac{17}{12}.\frac{1}{400}=\frac{17}{4800}\)

d) \(\left(-\frac{10}{3}\right)^3.\left(\frac{-6}{5}\right)^4=-\frac{100}{27}.\frac{1296}{625}\)\(=\frac{-4.48}{1.25}=-\frac{192}{25}\)

23 tháng 6 2015

a)\(5-\left(-\frac{5}{11}\right)^0+\left(\frac{1}{3}\right)^2:3=5-1+\frac{1}{9}\cdot\frac{1}{3}=4+\frac{1}{27}=\frac{108}{27}+\frac{1}{27}=\frac{109}{27}\)

b)\(2^3+3.\left(\frac{1}{2}\right)^0+\left[\left(-2\right)^3:\frac{1}{2}\right]=8+3.1+\left[\left(-8\right)\cdot2\right]=8+3-16=-5\)

23 tháng 6 2015

a/ \(5-\left(-\frac{5}{11}\right)^0+\left(\frac{1}{3}\right)^2:3=5-1+\frac{1}{9}:3=5-1+\frac{1}{27}=4+\frac{1}{27}=\frac{109}{27}\)

b/ \(2^3+3.\left(\frac{1}{2}\right)^0+\left[\left(-2\right)^3:\frac{1}{2}\right]=8+3.1+\left[-8:\frac{1}{2}\right]=11+-16=-5\)

28 tháng 3 2017

\(S=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+...+\frac{61}{\left(30.31\right)^2}\)

\(S=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+...+\frac{61}{30^2.31^2}\)

\(S=\frac{3}{1.4}+\frac{5}{4.9}+...+\frac{61}{900.961}\)

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{900}-\frac{1}{961}\)

\(S=1-\frac{1}{961}\)

\(S=\frac{960}{961}\)