Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\frac{2\cdot\left(-13\right)\cdot9\cdot10}{\left(-3\right)\cdot4\cdot\left(-5\right)\cdot26}\)
\(=\frac{2\cdot\left(-13\right)\cdot3\cdot3\cdot2\cdot5}{\left(-3\right)\cdot2\cdot2\cdot\left(-5\right)\cdot13\cdot2}\)
\(=-\frac{3}{2}\)
b) \(\frac{2^3\cdot3^4}{2^2\cdot3^2\cdot5}=\frac{2\cdot3^2}{5}=\frac{2\cdot9}{5}=\frac{18}{5}\)
\(\frac{2^4\cdot5^2\cdot11^2\cdot7}{2^3\cdot5^3\cdot7^2\cdot11}=\frac{2\cdot1\cdot11\cdot1}{1\cdot5\cdot7\cdot1}=\frac{22}{35}\)
c) \(\frac{121\cdot75\cdot130\cdot169}{39\cdot60\cdot11\cdot198}=\frac{11\cdot11\cdot13\cdot10\cdot169}{13\cdot3\cdot6\cdot10\cdot11\cdot11\cdot6\cdot3}\)
\(=\frac{169}{3\cdot6\cdot6\cdot3}=\frac{169}{324}\)
d) \(\frac{1998\cdot1990+3978}{1992\cdot1991-3984}\)
\(\frac{1}{2.5}\)\(+\)\(\frac{1}{5.8}\)\(+\frac{1}{8.11}\)\(+...+\frac{1}{152.155}\)
=\(\frac{1}{2}\) \(-\frac{1}{5}\) \(+\frac{1}{5}\) \(-\frac{1}{8}\) \(+...+\frac{1}{152}\) \(-\frac{1}{155}\)
=\(\frac{1}{2}\)\(-\frac{1}{155}\)
=\(\frac{153}{310}\)
a) \(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)....\left(\frac{1}{1000}-1\right)=-\frac{1}{2}.\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right)...\left(-\frac{999}{1000}\right)\)
\(=-\frac{1.2.3...999}{2.3.4...1000}=-\frac{1}{1000}\)
b)\(B=\frac{\frac{3}{5}+\frac{3}{7}-\frac{3}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{11}}:\frac{3}{4}=\frac{3\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}:\frac{3}{4}=\frac{3}{4}:\frac{3}{4}=1\)
d) \(D=1+\frac{1}{2}+\frac{1}{4}+..+\frac{1}{512}+\frac{1}{1024}\)
=> \(2D=2+1+\frac{1}{2}+...+\frac{1}{256}+\frac{1}{512}\)
=> \(2D-D=\left(2+1+\frac{1}{2}+...+\frac{1}{256}+\frac{1}{512}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}+\frac{1}{1024}\right)\)
=> \(D=2-\frac{1}{1024}=\frac{2047}{1024}\)
a) \(2^3+3.\left(\frac{1}{2}\right)^0+\left[\left(-2\right)^2:\frac{1}{2}\right]\)
\(=8+3.1+4:\frac{1}{2}\)
\(=8+3+8=19\)
b)\(\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^3}=\frac{2^{15}.3^8}{2^6.3^6.2^9}\)\(=\frac{2^{15}.3^8}{2^{15}.3^6}=3^2=9\)
c) \(\left(1+\frac{2}{3}-\frac{1}{4}\right).\left(\frac{4}{5}-\frac{3}{4}\right)^2\)
\(=\frac{17}{12}.\frac{1}{400}=\frac{17}{4800}\)
d) \(\left(-\frac{10}{3}\right)^3.\left(\frac{-6}{5}\right)^4=-\frac{100}{27}.\frac{1296}{625}\)\(=\frac{-4.48}{1.25}=-\frac{192}{25}\)
a)\(5-\left(-\frac{5}{11}\right)^0+\left(\frac{1}{3}\right)^2:3=5-1+\frac{1}{9}\cdot\frac{1}{3}=4+\frac{1}{27}=\frac{108}{27}+\frac{1}{27}=\frac{109}{27}\)
b)\(2^3+3.\left(\frac{1}{2}\right)^0+\left[\left(-2\right)^3:\frac{1}{2}\right]=8+3.1+\left[\left(-8\right)\cdot2\right]=8+3-16=-5\)
a/ \(5-\left(-\frac{5}{11}\right)^0+\left(\frac{1}{3}\right)^2:3=5-1+\frac{1}{9}:3=5-1+\frac{1}{27}=4+\frac{1}{27}=\frac{109}{27}\)
b/ \(2^3+3.\left(\frac{1}{2}\right)^0+\left[\left(-2\right)^3:\frac{1}{2}\right]=8+3.1+\left[-8:\frac{1}{2}\right]=11+-16=-5\)
\(S=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+...+\frac{61}{\left(30.31\right)^2}\)
\(S=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+...+\frac{61}{30^2.31^2}\)
\(S=\frac{3}{1.4}+\frac{5}{4.9}+...+\frac{61}{900.961}\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{900}-\frac{1}{961}\)
\(S=1-\frac{1}{961}\)
\(S=\frac{960}{961}\)
bạn tick giúp mình nhé